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Inverse Problem: Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement q(x).

q(x)︸︷︷︸
measurement

=
∫

M(x | y)︸ ︷︷ ︸
transfer

· p(y)︸︷︷︸
target

dy

Approach: set up a linear system of equations

q = Mp where

{
q = 1

|B |
∑

x∈B φ(x)

Mi = 1
|Di|

∑
x∈Di

φ(x)

and solve it by minimizing some loss, i.e.,

p̂ = arg min
p ∈ ∆C−1

` (p; q, M)
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Quantification

In Computer Science, this inverse problem is covered by Quantification Learning2,3.

Learn: a quantifier λ :
⋃∞

m=1 X m → ∆C−1 where

• X is the feature space (e.g., X = Rd)

• ∆C−1 =
{

p ∈ RC : pi ≥ 0 ∀i,
∑C

i=1 pi = 1
}

is the space of class prevalences

• for any bag B ∼ Qm, we want to achieve that λ(B) = Q(Y )

Given: a labeled training set D = {(xi, yi) ∈ X × Y}n
i=1 ∼ Pn where P 6= Q (e.g., MCs)

Approach: solve q = Mp for p (like before).

Quantification

≡ Unfolding

2 Esuli et al., Learning to Quantify, 2023.
3 Forman, “Quantifying counts and costs via classification”, 2008, .
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5 Learnings From

Quantification Research



1st Learning: Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),

it would return the true class prevalences:

λ′
(
Q(X)

)︸ ︷︷ ︸
population
analogue
of λ(B)

= Q(Y ) ∀ Q : Q(X | Y ) = P(X | Y )︸ ︷︷ ︸
for any Q with PPS

• can also be defined for other types of data set shift

• does not indicate good performance on finite samples

• hence, not a sufficient but certainly a necessary criterion for quantifier selection

1) RUN / TRUEE (and others) are Fisher consistent4 3

2) DSEA & DSEA+ are not Fisher consistent5 7

4 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
5 Gövert, “Fisher-Konsistenz für Quantification-Algorithmen”, 2023.
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2nd Learning: The Anatomy of Prediction Errors

Prediction Error Bound:6 describes the impact of and the interplay between causes of errors.

∥∥λ(B) − p∗
∥∥

2︸ ︷︷ ︸
prediction error

≤
2k(2 +

√
2 log 2C

δ
)√

λ2︸ ︷︷ ︸
representation φ

·
( ∥∥ p∗

ptrn

∥∥
2︸ ︷︷ ︸

shift

·
1√
|D|︸ ︷︷ ︸

volume D

+
1√
|B|︸ ︷︷ ︸

volume B

)

where

• λ(B) is the solution of q = Mp

• k is a constant s.t. ‖φ(x)‖2 ≤ k ∀ x ∈ X

• λ2 is the second-smallest eigenvalue of some particular G

• δ is the desired probability

6 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023, .
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3rd Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN7 p̂ = arg min
p ∈ RC

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

TRUEE8 p̂ = arg min
p ≥ 0

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

Constrained9 p̂ = arg min
p ∈ ∆C−1

`(p; q, M) valid 3

Soft-Max9 p̂ = σ(l∗) , l∗ = arg min
l ∈ RC−1

`( σ(l) ; q, M) valid 3

7 Blobel, Unfolding methods in high-energy physics experiments, 1985, .
8 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
9 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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4th Learning: Methods Are Numerous

Most methods are combinations of

• a data representation φ : X → Z

• a loss function ` : Z × Z → R

• an optimization algorithm

These components can be recombined to even more methods.

Representations: hard3 & soft10 classification, histograms11, tree-based binnings12, kernel means13, …

Loss Functions: least squares3,10, Hellinger distance11, energy distance13, Poisson likelihood7, …

10 Bella et al., “Quantification via Probability Estimators”, 2010, .
11 González-Castro, Alaíz-Rodríguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .
12 Börner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .
13 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,

2016, .
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4th Learning: Methods Are Numerous

Likelihood Principle:

L(p | B) = Q(B | p)

=
∏

x∈B Q(x | p)

PPS=
∏

x∈B

∑
y∈Y P(x | y) · py

⇒ − log L(p | B) = −
∑

x∈B log
∑

y∈Y P(x | y) · py

∝ −
∑

x∈B log
∑

y∈Y
P(y|x)
P(y) · py

Maximum Likelihood Method:14 choose p̂ = arg minp∈∆C−1 −
∑

x∈B log
∑

y∈Y
P̂(y | x)
P̂(y)︸ ︷︷ ︸

event-wise contributions

·py

14 Alexandari, Kundaje, and Shrikumar, “Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation”, 2020.
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5th Learning: Open Issues in Quantification Research

Complications of experimental physics:

• ordinality: yi ≺ yi+1 ∀ i ∈ Y (to be covered through regularization for ordinal plausibility15)

• background: Q(x) = Q(x,∅) +
∑C

y=1 Q(x, y) (PPS with a noise class6)

• acceptance / class-conditional selection bias: Q(x ∈ B | yi) 6= Q(x ∈ B | yj) ∃ i 6= j

• changing environment: Q(x, y) =
∑

e∈E Q(x, y, e)

• data-MC mismatches / concept shift: Q(x | y) 6= P(x | y) (in addition to PPS)

• inspect contributions of individual data items x ∈ B to λ(B) (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

15 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Recap: Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement q(x).

q(x)︸︷︷︸
measurement

=
∫

M(x | y)︸ ︷︷ ︸
transfer

· p(y)︸︷︷︸
target

dy

Approach: set up a linear system of equations

q = Mp where

{
q = 1

|B |
∑

x∈B φ(x)

Mi = 1
|Di|

∑
x∈Di

φ(x)

and solve it by minimizing some loss, i.e.,

p̂ = arg min
p ∈ ∆C−1

` (p; q, M)
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p̂1

p̂2

p̂3

p̂4

p̂5

∝
P(

y)

unknown y ∈ [1, 5]
≡ class label !

1 Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023
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Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:

3) Contraints must be implemented, either explicitly or via soft-max

4) Many methods—or aspects thereof—are still to be evaluated within physics

5) Physics applications motivate further developments in quantification research
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