

Quantification Learning for Inverse Problems

Mirko Bunse

Physics Monthly – Jan. 20th, 2025

Partner institutions:

Institutionally funded by:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfaler

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

$$\underline{q(x)} = \int \underbrace{M(x \mid y)}_{} \cdot \underbrace{p(y)}_{} \mathrm{d}y$$

transfer target

¹ Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

Approach: set up a linear system of equations

$$\mathbf{q} = \mathbf{M}\mathbf{p} \qquad \text{where } \begin{cases} \mathbf{q} &= \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \phi(x) \\ \mathbf{M}_i &= \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{cases}$$

¹ Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

Approach: set up a linear system of equations

$$\mathbf{q} = \mathbf{M}\mathbf{p} \qquad \text{where } \begin{cases} \mathbf{q} & = \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \phi(x) \\ \mathbf{M}_i = \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{cases}$$

and solve it by minimizing some loss, i.e.,

$$\hat{\mathbf{p}} = \operatorname*{arg\,min}_{\mathbf{p} \in \Delta^{C-1}} \ell(\mathbf{p}; \mathbf{q}, \mathbf{M})$$

¹ Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

Mirko Bunse

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

Approach: set up a linear system of equations

$$\mathbf{q} = \mathbf{M}\mathbf{p} \qquad \text{where } \begin{cases} \mathbf{q} & = \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \phi(x) \\ \mathbf{M}_i = \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{cases}$$

and solve it by minimizing some loss, i.e.,

$$\hat{\mathbf{p}} = \operatorname*{arg\,min}_{\mathbf{p} \in \Delta^{C-1}} \ell(\mathbf{p}; \mathbf{q}, \mathbf{M})$$

¹ Fig.: Morik and Rhode, Machine Learning under Resource Constraints - Discovery in Physics, 2023

In Computer Science, this inverse problem is covered by **Quantification Learning**^{2,3}.

² Esuli et al., *Learning to Quantify*, 2023.

³ Forman, "Quantifying counts and costs via classification", 2008, .

In Computer Science, this inverse problem is covered by Quantification Learning^{2,3}.

Learn: a quantifier $\lambda: \bigcup_{m=1}^{\infty} \mathcal{X}^m \to \Delta^{C-1}$ where

- ${\mathcal X}$ is the feature space (e.g., ${\mathcal X}={\mathbb R}^d)$
- $\Delta^{C-1} = \left\{ \mathbf{p} \in \mathbb{R}^C \, : \, \mathbf{p}_i \geq 0 \, \forall i, \, \sum_{i=1}^C \mathbf{p}_i = 1 \right\}$ is the space of class prevalences
- for any bag $\operatorname{B}\sim \mathbb{Q}^m$, we want to achieve that $\lambda(\operatorname{B})=\mathbb{Q}(Y)$

² Esuli et al., *Learning to Quantify*, 2023.

³ Forman, "Quantifying counts and costs via classification", 2008, .

In Computer Science, this inverse problem is covered by Quantification Learning^{2,3}.

Learn: a quantifier $\lambda: \bigcup_{m=1}^{\infty} \mathcal{X}^m \to \Delta^{C-1}$ where

- \mathcal{X} is the feature space (e.g., $\mathcal{X} = \mathbb{R}^d$)
- $\Delta^{C-1} = \left\{ \mathbf{p} \in \mathbb{R}^C \, : \, \mathbf{p}_i \geq 0 \, \forall i, \, \sum_{i=1}^C \mathbf{p}_i = 1 \right\}$ is the space of class prevalences
- for any bag $\operatorname{B}\sim \mathbb{Q}^m$, we want to achieve that $\lambda(\operatorname{B})=\mathbb{Q}(Y)$

Given: a labeled training set $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n \sim \mathbb{P}^n$ where $\mathbb{P} \neq \mathbb{Q}$ (e.g., MCs)

² Esuli et al., *Learning to Quantify*, 2023.

 $^{3}\,$ Forman, "Quantifying counts and costs via classification", 2008, .

In Computer Science, this inverse problem is covered by Quantification Learning^{2,3}.

Learn: a quantifier $\lambda: \bigcup_{m=1}^{\infty} \mathcal{X}^m \to \Delta^{C-1}$ where

- \mathcal{X} is the feature space (e.g., $\mathcal{X} = \mathbb{R}^d$)
- $\Delta^{C-1} = \left\{ \mathbf{p} \in \mathbb{R}^C \, : \, \mathbf{p}_i \ge 0 \, \forall i, \, \sum_{i=1}^C \mathbf{p}_i = 1 \right\}$ is the space of class prevalences
- for any bag $\operatorname{B}\sim \mathbb{Q}^m$, we want to achieve that $\lambda(\operatorname{B})=\mathbb{Q}(Y)$

Given: a labeled training set $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n \sim \mathbb{P}^n$ where $\mathbb{P} \neq \mathbb{Q}$ (e.g., MCs)

Approach: solve $\mathbf{q} = \mathbf{M}\mathbf{p}$ for \mathbf{p} (like before).

 $^{3}\,$ Forman, "Quantifying counts and costs via classification", 2008, .

² Esuli et al., *Learning to Quantify*, 2023.

5 Learnings From Quantification Research

1st Learning: Consistency

Definition (Fisher Consistency for Prior Probability Shift):

of $\lambda(B)$

If a consistent quantifier had access to the entire population $\mathbb{Q}(X)$ (i.e., to "unlimited data"), it would return the true class prevalences:

$$\frac{\lambda'(\mathbb{Q}(X))}{\underset{\text{analogue}}{\text{population}}} = \mathbb{Q}(Y) \quad \underbrace{\forall \ \mathbb{Q} : \mathbb{Q}(X \mid Y) = \mathbb{P}(X \mid Y)}_{\text{for any } \mathbb{Q} \text{ with PPS}}$$

⁴ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁵ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023.

1st Learning: Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population $\mathbb{Q}(X)$ (i.e., to "unlimited data"), it would return the true class prevalences:

$$\underbrace{\lambda'(\mathbb{Q}(X))}_{\substack{\text{population}\\ \text{analogue}\\ \text{of }\lambda(B)}} = \mathbb{Q}(Y) \quad \underbrace{\forall \ \mathbb{Q} : \mathbb{Q}(X \mid Y) = \mathbb{P}(X \mid Y)}_{\text{for any } \mathbb{Q} \text{ with PPS}}$$

- can also be defined for other types of data set shift
- does not indicate good performance on finite samples
- hence, not a sufficient but certainly a necessary criterion for quantifier selection

⁴ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁵ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023.

1st Learning: Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population $\mathbb{Q}(X)$ (i.e., to "unlimited data"), it would return the true class prevalences:

$$\underbrace{\lambda'(\mathbb{Q}(X))}_{\substack{\text{population}\\ \text{analogue}\\ \text{of }\lambda(B)}} = \mathbb{Q}(Y) \quad \underbrace{\forall \ \mathbb{Q} : \mathbb{Q}(X \mid Y) = \mathbb{P}(X \mid Y)}_{\text{for any } \mathbb{Q} \text{ with PPS}}$$

- can also be defined for other types of data set shift
- does not indicate good performance on finite samples
- hence, not a sufficient but certainly a necessary criterion for quantifier selection
- 1) RUN / TRUEE (and others) are Fisher consistent⁴ \checkmark
- 2) DSEA & DSEA+ are not Fisher consistent⁵
- ⁴ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁵ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023.

2nd Learning: The Anatomy of Prediction Errors

Prediction Error Bound:⁶ describes the *impact of* and the *interplay between* causes of errors.

where

- $\lambda(B)$ is the solution of $\mathbf{q} = \mathbf{M}\mathbf{p}$
- k is a constant s.t. $\|\phi(x)\|_2 \leq k \ \forall \ x \in \mathcal{X}$
- + λ_2 is the second-smallest eigenvalue of some particular ${f G}$
- δ is the desired probability

⁶ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023, .

Algorithm	Estim	nate		Validity	
RUN ⁷	$\hat{\mathbf{p}}$ =	rgmin	$\ell(\mathbf{p}; \; \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta^{C-1}$	X
		$\mathbf{p}\in\mathbb{R}^{C}$			

⁷ Blobel, Unfolding methods in high-energy physics experiments, 1985, .

⁸ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

Algorithm	Estimate	Validity
RUN ⁷	$\hat{\mathbf{p}} = \operatorname*{argmin}_{\mathbf{p} \in \mathbb{R}^C} \ell(\mathbf{p}; \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta^{C-1}$ X
TRUEE ⁸	$\hat{\mathbf{p}} = rgmin_{\mathbf{p}} \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$ $\mathbf{p} \ge 0$	invalid: $\hat{\mathbf{p}} \notin \Delta^{C-1}$ X

⁷ Blobel, Unfolding methods in high-energy physics experiments, 1985, .

⁸ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

Algorithm	Estimate	Validity
RUN ⁷	$ \hat{\mathbf{p}} = \operatorname{argmin}_{\boldsymbol{p} \in \mathbb{R}^C} \ell(\mathbf{p}; \mathbf{q}, \mathbf{M}) $	invalid: $\hat{\mathbf{p}} \notin \Delta^{C-1}$ X
TRUEE ⁸	$ \hat{\mathbf{p}} = \arg\min \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M}) $ $ \mathbf{p} \ge 0 $	invalid: $\hat{\mathbf{p}} \notin \Delta^{C-1}$ X
Constrained ⁹	$\hat{\mathbf{p}} = \operatorname*{argmin}_{\mathbf{p} \in \Delta^{C-1}} \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$	valid 🗸

⁷ Blobel, Unfolding methods in high-energy physics experiments, 1985, .

⁸ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

Algorithm	Estimate	Validity
RUN ⁷	$ \hat{\mathbf{p}} = \operatorname{argmin}_{\mathbf{p} \in \mathbb{R}^C} \ell(\mathbf{p}; \mathbf{q}, \mathbf{M}) $	invalid: $\hat{\mathbf{p}} \notin \Delta^{C-1}$ X
TRUEE ⁸	$ \hat{\mathbf{p}} = \underset{\mathbf{p} \ge 0}{\operatorname{argmin}} \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M}) $	invalid: $\hat{\mathbf{p}} \notin \Delta^{C-1}$ X
Constrained ⁹	$\hat{\mathbf{p}} = rgmin \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$ $\mathbf{p} \in \Delta^{C-1}$	valid 🗸
Soft-Max ⁹	$\hat{\mathbf{p}} = \sigma(\mathbf{l}^*)$, $\mathbf{l}^* = \operatorname*{argmin}_{\mathbf{l} \in \mathbb{R}^{C-1}} \ell(\sigma(\mathbf{l}); \mathbf{q}, \mathbf{M})$	valid 🗸

⁷ Blobel, Unfolding methods in high-energy physics experiments, 1985, .

⁸ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

Most methods are combinations of

- a data representation $\phi: \mathcal{X} \rightarrow \mathcal{Z}$
- a loss function $\ell: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$
- an optimization algorithm

These components can be recombined to even more methods.

¹⁰ Bella et al., "Quantification via Probability Estimators", 2010, .

¹¹ González-Castro, Alaíz-Rodríguez, and Alegre, "Class distribution estimation based on the Hellinger distance", 2013, .

¹² Börner et al., "Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era", 2020, .

¹³ Kawakubo, Plessis, and Sugiyama, "Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance", 2016, .

-

Most methods are combinations of

- a data representation $\phi: \mathcal{X} \rightarrow \mathcal{Z}$
- a loss function $\,\ell:\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}\,$
- an optimization algorithm

These components can be recombined to even more methods.

Representations: hard³ & soft¹⁰ classification, histograms¹¹, tree-based binnings¹², kernel means¹³, ...

Loss Functions: least squares^{3,10}, Hellinger distance¹¹, energy distance¹³, Poisson likelihood⁷, ...

¹⁰ Bella et al., "Quantification via Probability Estimators", 2010, .

¹¹ González-Castro, Alaíz-Rodríguez, and Alegre, "Class distribution estimation based on the Hellinger distance", 2013, .

¹² Börner et al., "Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era", 2020, .

¹³ Kawakubo, Plessis, and Sugiyama, "Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance", 2016, .

Likelihood Principle:

$$\begin{split} \mathcal{L}(\mathbf{p} \mid \mathbf{B}) &= \mathbb{Q}(\mathbf{B} \mid \mathbf{p}) \\ &= \prod_{\mathbf{x} \in \mathbf{B}} \mathbb{Q}(\mathbf{x} \mid \mathbf{p}) \\ &\stackrel{\mathsf{PPS}}{=} \prod_{\mathbf{x} \in \mathbf{B}} \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \end{split}$$

¹⁴ Alexandari, Kundaje, and Shrikumar, "Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation", 2020.

Likelihood Principle:

$$\begin{split} \mathcal{L}(\mathbf{p} \mid \mathbf{B}) &= \mathbb{Q}(\mathbf{B} \mid \mathbf{p}) \\ &= \prod_{\mathbf{x} \in \mathbf{B}} \mathbb{Q}(\mathbf{x} \mid \mathbf{p}) \\ &\stackrel{\mathsf{PPS}}{=} \prod_{\mathbf{x} \in \mathbf{B}} \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \end{split}$$

$$\Rightarrow -\log \mathcal{L}(\mathbf{p} \mid \mathbf{B}) = -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y$$
$$\propto -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \frac{\mathbb{P}(y|\mathbf{x})}{\mathbb{P}(y)} \cdot \mathbf{p}_y$$

¹⁴ Alexandari, Kundaje, and Shrikumar, "Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation", 2020.

Likelihood Principle:

$$\begin{split} \mathcal{L}(\mathbf{p} \mid \mathbf{B}) &= \mathbb{Q}(\mathbf{B} \mid \mathbf{p}) \\ &= \prod_{\mathbf{x} \in \mathbf{B}} \mathbb{Q}(\mathbf{x} \mid \mathbf{p}) \\ &\stackrel{\mathsf{PPS}}{=} \prod_{\mathbf{x} \in \mathbf{B}} \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \end{split}$$

$$\begin{array}{lll} \Rightarrow & -\log \mathcal{L}(\mathbf{p} \mid \mathbf{B}) & = & -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \\ \\ & \propto & -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \frac{\mathbb{P}(y|\mathbf{x})}{\mathbb{P}(y)} \cdot \mathbf{p}_y \end{array}$$

Maximum Likelihood Method:¹⁴ choose $\hat{\mathbf{p}} = \arg\min_{\mathbf{p}\in\Delta^{C-1}} - \sum_{\mathbf{x}\in\mathcal{B}} \log\sum_{y\in\mathcal{Y}} \underbrace{\frac{\hat{\mathbb{P}}(y \mid \mathbf{x})}{\hat{\mathbb{P}}(y)}}_{\hat{\mathbb{P}}(y)} \cdot \mathbf{p}_{y}$

event-wise contributions

¹⁴ Alexandari, Kundaje, and Shrikumar, "Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation", 2020.

Complications of experimental physics:

• ordinality: $y_i \prec y_{i+1} \,\, orall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility¹⁵)

¹⁵ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Complications of experimental physics:

- ordinality: $y_i \prec y_{i+1} \,\,\forall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility¹⁵)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^C \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class⁶)

¹⁵ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Complications of experimental physics:

- ordinality: $y_i \prec y_{i+1} \,\, orall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility¹⁵)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class⁶)
- acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$

¹⁵ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Complications of experimental physics:

- ordinality: $y_i \prec y_{i+1} \,\, \forall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility¹⁵)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class⁶)
- acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$

¹⁵ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Complications of experimental physics:

- ordinality: $y_i \prec y_{i+1} \,\, orall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility¹⁵)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, \emptyset) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class⁶)
- acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$
- data-MC mismatches / concept shift: $\mathbb{Q}(\mathbf{x} \mid y) \neq \mathbb{P}(\mathbf{x} \mid y)$ (in addition to PPS)

¹⁵ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Complications of experimental physics:

- ordinality: $y_i \prec y_{i+1} \,\, orall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility¹⁵)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, \emptyset) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class⁶)
- acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$
- data-MC mismatches / concept shift: $\mathbb{Q}(\mathbf{x} \mid y) \neq \mathbb{P}(\mathbf{x} \mid y)$ (in addition to PPS)
- inspect contributions of individual data items $\mathbf{x} \in B$ to $\lambda(B)$ (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

¹⁵ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Recap: Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

$$\underbrace{q(x)}_{q(x)} = \int \underbrace{M(x \mid y)}_{Y} \cdot \underbrace{p(y)}_{Y} dy$$

measurement

Approach: set up a linear system of equations

 $\mathbf{q} = \mathbf{M}\mathbf{p} \qquad \text{where } \begin{cases} \mathbf{q} &= \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \phi(x) \\ \mathbf{M}_i &= \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{cases}$

and solve it by minimizing some loss, i.e.,

$$\hat{\mathbf{p}} = \operatorname*{arg\,min}_{\mathbf{p} \in \Delta^{C-1}} \ell(\mathbf{p}; \, \mathbf{q}, \mathbf{M})$$

¹ Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

- 1) Consistency is a necessary criterion for algorithm selection
- 2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

- 1) Consistency is a necessary criterion for algorithm selection
- 2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:

- 3) Contraints must be implemented, either explicitly or via soft-max
- 4) Many methods—or aspects thereof—are still to be evaluated within physics
- 5) Physics applications motivate further developments in quantification research

