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Inverse Problem: Reconstruction of Spectra '
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Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement ¢(z). 1010 ] MAGIC, JHEAP 2015
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1 Fig.: Morik and Rhode, Machine Learning under Resource Constraints — Discovery in Physics, 2023
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Inverse Problem: Reconstruction of Spectra '

*>
Goal: reconstruct the spectrum p(y) of some
quantity y from a measurement g(x). 1010 ] —— MAGIC, JHEAP 2015
<+ Unfolding
q(z) = /M(m |v) p(y) dy =
~— —— 3 10-11 4
measurement transfer  target R
75 1072 4
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p = argmin £(p; q,M)
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Inverse Problem: Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some
quantity y from a measurement ¢(z).

q(x) = /M(m | y)- p(y) dy
~—~ ——
measurement transfer  target

Approach: set up a linear system of equations

q = ﬁZmEB (b(z)
M; = ﬁ ZzEDq‘, #(x)

and solve it by minimizing some loss, i.e.,

q = Mp where

p = argmin £(p; q,M)
pEACfl
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Quantification

In Computer Science, this inverse problem is covered by Quantification Learning?-3.

2 Esuli et al., Learning to Quantify, 2023.
3 Forman, “Quantifying counts and costs via classification”, 2008, .
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Quantification

In Computer Science, this inverse problem is covered by Quantification Learning?-3.

Learn: a quantifier A: [ J*°_ x™ — AY~! where
+ X is the feature space (e.g., X = R9)
o ACT = {p €RC : p; >0V, chzl pi = 1} is the space of class prevalences

« for any bag B ~ Q™, we want to achieve that A(B) = Q(Y")

2 Esuli et al., Learning to Quantify, 2023.
3 Forman, “Quantifying counts and costs via classification”, 2008, .
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+ X is the feature space (e.g., X = R9)
o ACT = {p €RC : p; >0V, chzl pi = 1} is the space of class prevalences
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Quantification '

o>
In Computer Science, this inverse problem is covered by Quantification Learning?-3.
Learn: a quantifier A: [ J*°_ x™ — AY~! where
+ X is the feature space (e.g., X = R9)
o ACT = {p €RC : p; >0V, chzl pi = 1} is the space of class prevalences
« for any bag B ~ Q™, we want to achieve that A(B) = Q(Y") Quantification
= Unfolding

Given: a labeled training set D = {(z;,¥:) € & x Y}, ~P" where P# Q (e.g., MCs)

Approach: solve q = Mp for p (like before).

2 Esuli et al., Learning to Quantify, 2023.
3 Forman, “Quantifying counts and costs via classification”, 2008, .
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5 Learnings From
Quantification Research



15t Learning: Consistency '
>
Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),
it would return the true class prevalences:

N(Q(X)) =Q(Y) ¥YQ:QX|Y)=PX|Y)

——

population for any Q with PPS
analogue
of A(B)

4 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
5 Govert, “Fisher-Konsistenz fur Quantification-Algorithmen”, 2023.
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15t Learning: Consistency '

o>
Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),

it would return the true class prevalences:

N(Q(X)) =Q(Y) ¥YQ:QX|Y)=PX|Y)

——

population for any Q with PPS
analogue
of A(B)

» can also be defined for other types of data set shift
» does not indicate good performance on finite samples
* hence, not a sufficient but certainly a necessary criterion for quantifier selection

1) RUN / TRUEE (and others) are Fisher consistent?*
2) DSEA & DSEA+ are not Fisher consistent® X

4 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
5 Govert, “Fisher-Konsistenz fur Quantification-Algorithmen”, 2023.
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2"d earning: The Anatomy of Prediction Errors '
4
<

Prediction Error Bound:® describes the impact of and the interplay between causes of errors.

2k(2+s/2log%).(H Pt 1 . 1 )
VA B
N——

[A®B) - p* <
2 A/ )\2 Ptrn
prediction error representation ¢ shift volume D volume B

—_— —,——

where

* A(B) is the solution of g = Mp
* k isaconstant sit. ||[¢p(z)|2 <k VzeX
* A2 is the second-smallest eigenvalue of some particular G

* § is the desired probability

6 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023, .
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3" Learning: Improved Optimization Techniques

Algorithm Estimate Validity
RUN7 p = argmin {(p; q,M) invalid: p ¢ AC—1 X
p € R®

7 Blobel, Unfolding methods in high-energy physics experiments, 1985, .

8 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
9 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .

<

>

Mirko Bunse Quantification Learning for Inverse Problems



3" Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN7 p = argmin {(p; q,M) invalid: p ¢ AC—1 X
p € R®

TRUEE® p = argmin £(p; q,M) invalid: p¢ AC—1 X
p=>0

7 Blobel, Unfolding methods in high-energy physics experiments, 1985, .
8 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
9 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .

<

>

Mirko Bunse Quantification Learning for Inverse Problems



3" Learning: Improved Optimization Techniques

<

Algorithm Estimate Validity

RUN7 p = argmin {(p; q,M) invalid: p ¢ AC—1 X
p € R®

TRUEE® p = argmin £(p; q,M) invalid: p¢ AC—1 X
p=>0

Constrained® p = argmin £(p; q,M) valid v/
p € AC-1

7 Blobel, Unfolding methods in high-energy physics experiments, 1985, .

8 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.

9 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .

>

Mirko Bunse

Quantification Learning for Inverse Problems



3" Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN7 p = argmin {(p; q,M) invalid: p ¢ AC—1 X
p € R®

TRUEE® p = argmin £(p; q,M) invalid: p¢ AC—1 X
p=>0

Constrained® p = argmin £(p; q,M) valid
p € AC—l

Soft-Max® p= ol*), 1" =argmin £{(o(l); q, M) valid

1€RC—1

7 Blobel, Unfolding methods in high-energy physics experiments, 1985, .

8 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.

9 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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4th Learning: Methods Are Numerous '
4
L

Most methods are combinations of

» a data representation ¢: X - Z
» aloss function £: Zx Z - R

» an optimization algorithm

These components can be recombined to even more methods.

10 Bella et al., “Quantification via Probability Estimators”, 2010, .

n Gonzalez-Castro, Alaiz-Rodriguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .

12 B&rner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .

3 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,
2016, .
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4th Learning: Methods Are Numerous '
4
L

Most methods are combinations of

» a data representation ¢: X - Z
» aloss function £: Zx Z - R

» an optimization algorithm

These components can be recombined to even more methods.

Representations: hard® & soft'® classification, histograms', tree-based binnings'?, kernel means', ...

Loss Functions: least squares®'0, Hellinger distance', energy distance'®, Poisson likelihood?, ...

10 Bella et al., “Quantification via Probability Estimators”, 2010, .

n Gonzalez-Castro, Alaiz-Rodriguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .

12 B&rner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .

3 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,
2016, .
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4th Learning: Methods Are Numerous '
>
Likelihood Principle:

L(p|B) = QB|p)

= Jlics Qx| P)

= erB Zyey P(x|y) py

“ Alexandari, Kundaje, and Shrikumar, “Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation”, 2020.

Mirko Bunse Quantification Learning for Inverse Problems 8



4th Learning: Methods Are Numerous '
>
Likelihood Principle:

L(p|B) = QB|p)

= Jlics Qx| P)
= HxEB Zyey P(X I y) P

= —logL(p|B) = -3 _plog)  P(x|y) py

x erB OgZyey Py Py

“ Alexandari, Kundaje, and Shrikumar, “Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation”, 2020.

Mirko Bunse Quantification Learning for Inverse Problems 8
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>
Likelihood Principle:

L(p|B) = QB|p)

= Jlics Qx| P)
= HxEB Zyey P(X I y) P

= —logL(p|B) = -3 _plog)  P(x|y) py

x erB OgZyey Py Py

. - . R ) P(y | x)
Maximum Likelihood Method:" choose p = argmin,ac-1 —erB gzyey B(y) ‘Py

event-wise contributions

“ Alexandari, Kundaje, and Shrikumar, “Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation”, 2020.
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5t Learning: Open Issues in Quantification Research

Complications of experimental physics:

» ordinality: y; <yiy1 Vi €Y (to be covered through regularization for ordinal plausibility

15 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.

’\5)
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Complications of experimental physics:

- ordinality: y; <yi+1 Vi€ Y (to be covered through regularization for ordinal plausibility™)
* background: Q(x) = Q(x,92) + 25:1 Q(x,y) (PPS with a noise class®)
+ acceptance / class-conditional selection bias: Q(x € B |y;) # Qx€B|y;) Ji#J
» changing environment: Q(x,y) = ZeES Q(x,y,e)

» data-MC mismatches / concept shift: Q(x|y) # P(x|y) (in addition to PPS)

15 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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5t Learning: Open Issues in Quantification Research

Complications of experimental physics:
- ordinality: y; <yi+1 Vi€ Y (to be covered through regularization for ordinal plausibility™)
* background: Q(x) = Q(x,92) + 25:1 Q(x,y) (PPS with a noise class®)
+ acceptance / class-conditional selection bias: Q(x € B |y;) # Qx€B|y;) Ji#J
» changing environment: Q(x,y) = ZeES Q(x,y,e)
» data-MC mismatches / concept shift: Q(x|y) # P(x|y) (in addition to PPS)

« inspect contributions of individual data items x € B to A(B) (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

5 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Recap: Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some
quantity y from a measurement ¢(z).

q(x) = /M(r | y)- p(y) dy
~—~ ——
measurement transfer  target

Approach: set up a linear system of equations

a4 =572 ,en 4@

and solve it by minimizing some loss, i.e.,

q = Mp where

p = argmin £(p; q,M)
peAC—l
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1 Fig.: Morik and Rhode, Machine Learning under Resource Constraints — Discovery in Physics, 2023
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Conclusion: 5 Learnings From Quantification '
o>
Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes
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Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:

3) Contraints must be implemented, either explicitly or via soft-max
4) Many methods—or aspects thereof—are still to be evaluated within physics

5) Physics applications motivate further developments in quantification research
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