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Recap: Deep Sets
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» Each event is a set of tracks {z; € X' : 1 <i <m} of variable size m

1 Zaheer et al., “Deep sets”, 2017
2 |ee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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* Each event is a set of tracks {z; € X : 1 <i <m} of variable size m

» Track representations ¢(z;) are aggregated by (un-weighted) sum pooling

1 Zaheer et al., “Deep sets”, 2017
2 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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* Each event is a set of tracks {z; € X : 1 <i <m} of variable size m

» Track representations ¢(z;) are aggregated by (un-weighted) sum pooling

Deep Sets are universal approximators of permutation-invariant functions' (), but they ...

1 Zaheer et al., “Deep sets”, 2017
2 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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* Each event is a set of tracks {z; € X : 1 <i <m} of variable size m

» Track representations ¢(z;) are aggregated by (un-weighted) sum pooling
Deep Sets are universal approximators of permutation-invariant functions' (), but they ...

» might be inefficient in representing interactions between tracks? x

1 Zaheer et al., “Deep sets”, 2017
2 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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* Each event is a set of tracks {z; € X : 1 <i <m} of variable size m

» Track representations ¢(z;) are aggregated by (un-weighted) sum pooling

Deep Sets are universal approximators of permutation-invariant functions' (), but they ...
» might be inefficient in representing interactions between tracks? x

* might over-fit to simulated training data x

1 Zaheer et al., “Deep sets”, 2017
2 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019

Mirko Bunse and Quentin Fithrung Domain Adaptation for Flavour Tagging at LHCb 1



Set Transformers

Idea:

Model track interactions through Self-Attention?
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Idea: Model track interactions through Self-Attention?

Attention(Xl,X2) = O’((XlWQ)(XQWK)T)XQWV
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Set Transformers

Universal Approximation v/
Track interactions /
Over-fitting to simulations X



Unsupervised Domain Adaptation

Problem: Simulations and real data do not match perfectly, i.e. Ps(X,Y) # Pr(X,Y)
3 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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Unsupervised Domain Adaptation

Problem: Simulations and real data do not match perfectly, i.e. Ps(X,Y) # Pr(X,Y)

» Assume Concept Shift: Ps(X |Y) #Pr+(X |Y) and Ps(Y) =P (Y)
* Employ Unlabeled Data: Dy = {:Jc ~ IPT(X)}

3 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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Unsupervised Domain Adaptation

Problem: Simulations and real data do not match perfectly, i.e. Ps(X,Y) # Pr(X,Y)
» Assume Concept Shift: Ps(X |Y) #Pr+(X |Y) and Ps(Y) =P (Y)
* Employ Unlabeled Data: Dy = {:1: ~ IP’T(X)}

Domain-Adversarial UDA:3
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3 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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Problem: Simulations and real data do not match perfectly, i.e. Ps(X,Y) # Pr(X,Y)
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Unsupervised Domain Adaptation

Problem: Simulations and real data do not match perfectly, i.e. Ps(X,Y) # Pr(X,Y)
» Assume Concept Shift: Ps(X |Y) #Pr+(X |Y) and Ps(Y) =P (Y)
* Employ Unlabeled Data: Dy = {:1: ~ IP’T(X)}

Domain-Adversarial UDA:3

layer 1
layer 2
layer n
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|domain’l|| n+1 |
|domain2|| n+2 |

s g = 1 ifeeDr
0 if (z,y) € Ds

%/—/
Set Encoder or Deep Set

3 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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(Preliminary) Performance
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(Preliminary) Performance

@ Deep Set V UDA Set Transformer

B UDA Deep Set
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(Preliminary) Performance

@ Deep Set V UDA Set Transformer
51% tpT

75% dat

B UDA Deep Set
51% tpt
69% dal

tp = tagging power
da = domain accuracy
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(Preliminary) Performance

5.6% tpt
60% dal

@ Deep Set
51% tpT
75% dal

51% tpt
69% dal

A Set Transformer

(Preliminary) conclusions:

» Set Transformers increase tagging power
and reduce mis-matches

V UDA Set Transformer

5.5% tpt
59% dal

B UDA Deep Set

tp = tagging power
da = domain accuracy

» UDA does not improve tagging power (for now)
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A Set Transformer

5.6% tpT
60% dal
@ Deep Set V UDA Set Transformer
51% tpT 5.5% tpT
75% dal 59% dal

B UDA Deep Set
51% tpt
69% dal

tp = tagging power

da = domain accuracy

(Preliminary) conclusions:

» Set Transformers increase tagging power
and reduce mis-matches

» UDA does not improve tagging power (for now)

Grains of salt:

« Difficulties in balancing the influence of UDA
(currently: via multiple training phases)
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B UDA Deep Set
51% tpt
69% dal

tp = tagging power

da = domain accuracy

(Preliminary) conclusions:

» Set Transformers increase tagging power
and reduce mis-matches

» UDA does not improve tagging power (for now)

Grains of salt:
« Difficulties in balancing the influence of UDA
(currently: via multiple training phases)
* Unclear influence of factors besides mis-matches,
like background and sweights
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(Preliminary) Performance

A Set Transformer

5.6% tpT
60% dal
@ Deep Set V UDA Set Transformer
51% tpT 5.5% tpT
75% dal 59% dal

B UDA Deep Set
51% tpt
69% dal

tp = tagging power

da = domain accuracy

(Preliminary) conclusions:

» Set Transformers increase tagging power
and reduce mis-matches

» UDA does not improve tagging power (for now)

Grains of salt:

« Difficulties in balancing the influence of UDA
(currently: via multiple training phases)

* Unclear influence of factors besides mis-matches,
like background and sweights

Let’s discuss!
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