

Domain Adaptation for Flavour Tagging at LHCb

Mirko Bunse and Quentin Führung

Lamarr Physics Monthly – April 7th, 2025

Partner institutions:

Institutionally funded by:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfaler

• Each event is a **set of tracks** $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m

¹ Zaheer et al., "Deep sets", 2017

- Each event is a **set of tracks** $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m
- Track representations $\phi(x_i)$ are aggregated by (un-weighted) ${\bf sum} \ {\bf pooling}$

¹ Zaheer et al., "Deep sets", 2017

- Each event is a **set of tracks** $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m
- Track representations $\phi(x_i)$ are aggregated by (un-weighted) sum pooling

Deep Sets are **universal approximators** of permutation-invariant functions¹ (\checkmark), but they ...

¹ Zaheer et al., "Deep sets", 2017

- Each event is a **set of tracks** $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m
- Track representations $\phi(x_i)$ are aggregated by (un-weighted) sum pooling

Deep Sets are **universal approximators** of permutation-invariant functions¹ (\checkmark), but they ...

¹ Zaheer et al., "Deep sets", 2017

- Each event is a **set of tracks** $\{x_i \in \mathcal{X} : 1 \leq i \leq m\}$ of variable size m
- Track representations $\phi(x_i)$ are aggregated by (un-weighted) sum pooling

Deep Sets are **universal approximators** of permutation-invariant functions¹ (\checkmark), but they ...

- might be inefficient in representing interactions between tracks 2 $\,\not$
- might over-fit to simulated training data X

¹ Zaheer et al., "Deep sets", 2017

Idea: Model track interactions through Self-Attention²

Idea: Model track interactions through Self-Attention²

Attention $(X_1, X_2) = \sigma ((X_1 W_Q) (X_2 W_K)^{\top}) X_2 W_V$

Idea: Model track interactions through Self-Attention²

Attention $(X_1, X_2) = \sigma ((X_1 W_Q) (X_2 W_K)^{\top}) X_2 W_V$

Idea: Model track interactions through Self-Attention²

Attention $(X_1, X_2) = \sigma ((X_1 W_Q) (X_2 W_K)^{\top}) X_2 W_V$

Self-Attention Block:

Attention $(X_1, X_2) = \sigma ((X_1 W_Q) (X_2 W_K)^{\top}) X_2 W_V$

Attention $(X_1, X_2) = \sigma ((X_1 W_Q) (X_2 W_K)^{\top}) X_2 W_V$

Self-Attention Block: X.... ×

Set Encoder:

SAB o ... o SAB o PA

Universal Approximation ✓ Track interactions ✓ Over-fitting to simulations X

Problem: Simulations and real data do not match perfectly, i.e. $\mathbb{P}_{\mathcal{S}}(X,Y) \neq \mathbb{P}_{\mathcal{T}}(X,Y)$

Problem: Simulations and real data do not match perfectly, i.e. $\mathbb{P}_{\mathcal{S}}(X,Y) \neq \mathbb{P}_{\mathcal{T}}(X,Y)$

- Assume Concept Shift: $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ and $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$
- Employ Unlabeled Data: $D_{\mathcal{T}} = \left\{ x \sim \mathbb{P}_{\mathcal{T}}(X) \right\}$

Problem: Simulations and real data do not match perfectly, i.e. $\mathbb{P}_{\mathcal{S}}(X,Y) \neq \mathbb{P}_{\mathcal{T}}(X,Y)$

- Assume Concept Shift: $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ and $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$
- Employ Unlabeled Data: $D_{\mathcal{T}} = \left\{ x \sim \mathbb{P}_{\mathcal{T}}(X) \right\}$

Domain-Adversarial UDA:³

Problem: Simulations and real data do not match perfectly, i.e. $\mathbb{P}_{\mathcal{S}}(X,Y) \neq \mathbb{P}_{\mathcal{T}}(X,Y)$

- Assume Concept Shift: $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ and $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$
- Employ Unlabeled Data: $D_{\mathcal{T}} = \left\{ x \sim \mathbb{P}_{\mathcal{T}}(X) \right\}$

Domain-Adversarial UDA:³

Problem: Simulations and real data do not match perfectly, i.e. $\mathbb{P}_{\mathcal{S}}(X,Y) \neq \mathbb{P}_{\mathcal{T}}(X,Y)$

- Assume Concept Shift: $\mathbb{P}_{\mathcal{S}}(X \mid Y) \neq \mathbb{P}_{\mathcal{T}}(X \mid Y)$ and $\mathbb{P}_{\mathcal{S}}(Y) = \mathbb{P}_{\mathcal{T}}(Y)$
- Employ Unlabeled Data: $D_{\mathcal{T}} = \left\{ x \sim \mathbb{P}_{\mathcal{T}}(X) \right\}$

Domain-Adversarial UDA:³

(Preliminary) conclusions:

- Set Transformers increase tagging power and reduce mis-matches
- UDA does not improve tagging power (for now)

(Preliminary) conclusions:

- Set Transformers increase tagging power and reduce mis-matches
- UDA does not improve tagging power (for now)

Grains of salt:

• Difficulties in balancing the influence of UDA (currently: via multiple training phases)

(Preliminary) conclusions:

- Set Transformers increase tagging power and reduce mis-matches
- UDA does not improve tagging power (for now)

Grains of salt:

- Difficulties in balancing the influence of UDA (currently: via multiple training phases)
- Unclear influence of factors besides mis-matches, like background and sweights

(Preliminary) conclusions:

- Set Transformers increase tagging power and reduce mis-matches
- UDA does not improve tagging power (for now)

Grains of salt:

- Difficulties in balancing the influence of UDA (currently: via multiple training phases)
- Unclear influence of factors besides mis-matches, like background and sweights

Let's discuss!