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Recap: Deep Sets
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• Each event is a set of tracks {xi ∈ X : 1 ≤ i ≤ m} of variable size m

• Track representations φ(xi) are aggregated by (un-weighted) sum pooling

Deep Sets are universal approximators of permutation-invariant functions1 (3), but they …

• might be inefficient in representing interactions between tracks2 7

• might over-fit to simulated training data 7

1 Zaheer et al., “Deep sets”, 2017
2 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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Set Transformers

Idea: Model track interactions through Self-Attention2

Attention Block
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Set Transformers

Universal Approximation 3

Track interactions 3

Over-fitting to simulations 7



Unsupervised Domain Adaptation

Problem: Simulations and real data do not match perfectly, i.e. PS(X, Y ) 6= PT (X, Y )

• Assume Concept Shift: PS(X | Y ) 6= PT (X | Y ) and PS(Y ) = PT (Y )

• Employ Unlabeled Data: DT =
{

x ∼ PT (X)
}

Domain-Adversarial UDA:3
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Set Encoder or Deep Set

3 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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(Preliminary) Performance

Reduction
of
M
is-m

atches

M
od
el
in
g
of
In
te
ra
ct
io
ns

tp = tagging power

da = domain accuracy

Deep Set

5.1% tp↑

75% da↓

UDA Deep Set

5.1% tp↑

69% da↓

Set Transformer

5.6% tp↑

60% da↓

UDA Set Transformer

5.5% tp↑

59% da↓

(Preliminary) conclusions:

• Set Transformers increase tagging power

and reduce mis-matches

• UDA does not improve tagging power (for now)

Grains of salt:

• Difficulties in balancing the influence of UDA

(currently: via multiple training phases)

• Unclear influence of factors besides mis-matches,

like background and sweights

Let’s discuss!
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