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Two Views of XAI



Rudin (2019)
‘explanation’ [...] refers to an understanding of how a model
works, as opposed to an explanation of how the world works.
[...]

a function that is too complicated for any human to
comprehend

Lipton (2018)
An interpretation may prove informative even without
shedding light on a model’s inner workings. [...] The real goal
might be to explore the underlying structure of the data [...].

• narrow construal of XAI: efforts for explaining a model / its
outputs

• broad construal of XAI: efforts for explaining things to do
with a model / its outputs
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• understanding how a model works
• understanding what a model learns
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Sullivan (2022)
it is not the complexity or black box nature of a model that
limits how much understanding the model provides.

Sullivan (2022)
it is a lack of scientific and empirical evidence supporting the
link that connects a model to the target phenomenon

• link may be severed due to unknown phenomena and
“what-opacity”
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Räz and Beisbart (2022)
researchers do not fully understand which features the DNN
picks up on

Räz and Beisbart (2022)
understanding how this works means understanding how the
model as such behaves in general [...] and not how the model
relates to a particular [...] target.

• how- and what-opacity can come apart
• what-opacity does concern links to the particular target
(what’s being found out about it?)
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What follows is most naturally understood in terms of

• methods that fall under XAI in the broad, but not
necessarily the narrow sense

• what-opacity
• explanations of what the ML system finds in the data, in
order to succeed

• how to use this for fostering scientific progress

8



What follows is most naturally understood in terms of

• methods that fall under XAI in the broad, but not
necessarily the narrow sense

• what-opacity
• explanations of what the ML system finds in the data, in
order to succeed

• how to use this for fostering scientific progress

8



What follows is most naturally understood in terms of

• methods that fall under XAI in the broad, but not
necessarily the narrow sense

• what-opacity

• explanations of what the ML system finds in the data, in
order to succeed

• how to use this for fostering scientific progress

8



What follows is most naturally understood in terms of

• methods that fall under XAI in the broad, but not
necessarily the narrow sense

• what-opacity
• explanations of what the ML system finds in the data, in
order to succeed

• how to use this for fostering scientific progress

8



What follows is most naturally understood in terms of

• methods that fall under XAI in the broad, but not
necessarily the narrow sense

• what-opacity
• explanations of what the ML system finds in the data, in
order to succeed

• how to use this for fostering scientific progress

8



What is an “Explanation” in XAI?



‘Explanation’ in the philosophy of science:

• deductive-nomological (Hempel and Oppenheim, 1948)

• statistical relevance (Salmon, 1970)

• causal-mechanical (Dowe, 2000; Salmon, 1984)

• unificationist (Friedman, 1974)

• pragmatic (Van Fraassen, 1980)

• minimal model (Batterman and Rice, 2014)

• causal(-graph theoretic) (Pearl, 2009; Spirtes et al., 2000)

• mathematical (Baker, 2005)

• functional (Cummins, 1975)

• simulacrum (Cartwright and McMullin, 1984)

• how possibly (Dray, 1957)

• . . .
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(Methods for) ‘explanation’ in XAI:

• saliency maps (Simonyan et al., 2013)

• layer-wise relevance-propagation (Bach et al., 2015)

• deep lift (Li et al., 2021)

• integrated gradients (Sundararajan et al., 2017)

• network dissection (Bau et al., 2017, 2018)

• information bottleneck (Schwartz-Ziv and Tishby, 2017)

• counterfactual explanations (Wachter et al., 2017)

• LIME (Ribeiro et al., 2016)

• concept-attribution vectors (Kim et al., 2018)

• deep dream (Mordvintsev et al., 2015)

• data-planing (Chang et al., 2018)

• . . .
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Páez (2019)
explanations in the present stage of AI are incommensurable
with the types of explanations discussed in the philosophy of
science.

Krishnan (2020)
There is a substantial literature within philosophy of science
concerning the nature of explanation [...] largely orthogonal
to the concerns of those seeking explicability or
interpretability of ML algorithms.

12
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Erasmus et al. (2021)
A DN explanation of how [a CNN] assesses an input image
involves listing the weights attached to each and every node
and the informational routes

Erasmus et al. (2021)
explaining [...] how the weights of all relevant nodes and
edges produced the output value, along with the law that an
output is assigned to the most probable class [...] which
includes the set of input values assigned to [image] I, and the
output value c.

• very sketchy
• not aligned with actual XAI methods
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(Räz, 2022)

• rigorous
• aligned with XAI
• just one example
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Buijsman (2022)
counterfactuals are presented but without overarching
generalizations [...] doesn’t truly explain the functioning of an
algorithm

Baron (2023)
basic causal certification [...] a guarantee that the information
provided to users is always genuine causal information.

proof of concept
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So What?



Douglas (2009)
A scientific explanation will be expected to produce new,
generally successful predictions. An explanation that is not in
fact used to generate predictions, or whose predictions
quickly and obviously fail, would be scientifically suspect. An
example of an explanation that fails to meet these criteria is
any “just-so” story.

• many evolutionary stories are irrefutable (Gould and
Lewontin, 1979)

• some optimality models can be shown to make testable
predictions (Orzack and Sober, 1994)

• scientific explanations stick their neck out
• why apply less rigorous standards in XAI?
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• taking the X in XAI seriously enables applying rigorous
standards

• especially: testability
• makes sense if we want to trust ML models
• ... and if we want the explanation to relate to reality, not
just the model (broad construal / what-opacity)
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Can we Really Test Hypotheses?



Popper (1959)
A theory is to be called [...] ‘falsifiable’ if it divides the class of
all [conceivable singular statements of fact] unambiguously
into [...] those [...] with which it is inconsistent [...] and [...]
those [...] which it does not contradict

Popper (1959)
We shall take [a theory] as falsified only if [...] a low-level
empirical hypothesis which describes [...] a reproducible
effect which refutes the theory [...] is proposed and
corroborated

• insufficient consideration of holism (Duhem, 1914; Quine,
1951)

• theory-ladenness of the falsifying hypothesis?
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Lakatos (1970)
continuity evolves from a genuine research programme
[which] consists of methodological rules

Lakatos (1970)
The negative heuristic specifies the ‘hard core’ of the
programme [...]; the positive heuristic consists of a partially
articulated set of suggestions or hints on [...] how to modify,
sophisticate, the ‘refutable’ protective belt.

• what about statistical hypotheses
• measurement (almost?) inevitably introduces
probabilities...
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Gillies (2000)
falsifying rule for probability statements [...] if the value
obtained for X is in the tails of the distribution, this should
be regarded as falsifying H

Gillies (2000)
broad agreement between the proposed falsifying rule and
the practice of statistical testing

• non-reproducible effects in HEP: 3σ 7→ 5σ
• in psychology: re-assessment of replication
• what’s the overarching standard?
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Popper (1959)
We must clearly distinguish between falsifiability and
falsification. [...] falsifiability [...] as a criterion for the
empirical character of a system of statements.

Genin (2022)
a variety of different methodologies of falsification [...] give
rise to exactly the same collection of falsifiable hypotheses.

Genin (2022)
statistically falsifiable propositions [...] are exactly the closed
sets in the weak topology

• value attributions in measurements m = λ± δ correspond
to open sets, m ∈]λ− δ,λ+ δ[

• lots of scientific claims aren’t falsifiable
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testability lost?

• unlike ‘god exists’, open interval can be turned into closed
one

• varying standards of de facto falsification may be
reasonable:

• large enough amounts of data make effects more likely⇝
higher standards required (HEP)

• framing effects etc. introduce different subtleties⇝ careful
consideration of reproduction indicated (psychology)

• in general: external values should influence our
willingness to reject hypotheses (Douglas, 2000)
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testability lost?

• testability as an incremental process of (dis-)confirmation
(e.g. Sprenger and Hartmann, 2019)

• can happen precisely for the reason that one hypothesis
explains the data better than another (Schupbach, 2016)
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The FXAI framework
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Image credit: Axel Mosig @ BioInf / RUB
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Interpretation first

Erasmus et al. (2021)
interpretation is something that one does to an explanation
to make it more understandable.

Ribeiro et al. (2016)
explanations [...] must be interpretable, i.e., provide
qualitative understanding between the input variables and
the response
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Case study



Image credit: Jürgen Bajorath @ Lamarr / U Bonn

• absence/ presence of certain features relevant for single /
dual target prediction

• ‘coherent substructures’ as interpretable representations
• explanatory hypothesis: caffeine / coumarin causally
responsible for dual-target behavior

• requires experimental validation / further testing
• confirmation through literature search
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Conclusion



• XAI can serve the purpose of understanding AI and the
world

• if we want to make headway, we should treat ‘AI
explanations’ with scientific rigor

• for that, they should be probed for predictivity and
empirically tested

• as a matter of fact, this has lead to progress in actual
research
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Thank You!
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