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- broad construal of XAl: efforts for explaining things to do
with a model / its outputs
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Abstract

Deep neural networks (DNNs) have become increasingly successful in applications
from biology to cosmology to social science. Trained DNNs, moreover, correspond
to models that ideally allow the prediction of new phenomena. Building in part on
the literature on ‘eXplainable AI' (XAI), I here argue that these models are instru-
mental in a sense that makes them non-explanatory, and that their automated gen-
eration is opaque in a unique way. This combination implies the possibility of an
unprecedented gap between discovery and explanation: When unsupervised models
are successfully used in exploratory contexts, scientists face a whole new challenge
in forming the concepts required for understanding underlying mechanisms.

Keywords Machine learning - Opacity - Models - Explanation - Scientific
understanding - Exploratory experimentation
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Abstract
Despite their great success, there is still no comprehensive theoretical understanding of learning
with Deep Neural Networks (DNNs) or their inner organization. Previous work [[Tishby and Za-
[ slavsky| (2015)] proposed to analyze DNNs in the lnjormation Plane; i.c., the plane of the Mutual
Information values that each layer preserves on the input and output variables. They suggested that
the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compres-
sion and prediction, successively, for cach layer.
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What is the machine learning?

Spencer Chang, Timothy Cohen, and Bryan Ostdiek
Institute of Theovetical Science, University of Oregon, Eugene, Oregon 97403, USA

[®] (Received 19 October 2017; published 13 March 2018)

Applications of machine leaming wols to problems of physical interest are often criticized for producing
sensitivity at the expense of ransparency. To address this concern, we explore a data planing procedure for

identifying comhinations of variables—aided by physical intuition—that can discriminate signal from
background. Weights are introduced to smooth away the features in a given variable(s). New networks are
then trained on this modified data. Observed decreases in sensi

ity diagnose the variable’s discriminating
power. Planing also allows the investigation of the linear versus nonlinear nature of the boundaries between
signal and background. We demonsirate the efficacy of this approach using a toy example, followed
by an application (o an idealized heavy resonance scenario at the Large Hadron Collider, By unpacking
the information being utilized by these algorithms. this method puts in context what it means for a machine

0 leam.

DOIL: 10.1103/PhysRevD 97056009

L INTRODUCTION

A common argument against using machine learning for
physical applications is that they function as a black box:
send in some data and out comes a number. While this kind
of nonparametric estimation can be extremely useful, a
physicist often wants to understand what aspect of the input

of human-friendly variables that best characterize the
data. While we are not inverting the network to find its
functional form, we are providing a scheme for under-
standing classifiers.

For context, we acknowledge related studies within the
growing machine leaming for particle physics literature.
The anthare of [7_81 amnhacizad the ahility of dean
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“what-opacity”
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Raz and Beisbart (2022)

- how- and what-opacity can come apart

- what-opacity does concern links to the particular target
(what's being found out about it?)
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What follows is most naturally understood in terms of

- methods that fall under XAl in the broad, but not
necessarily the narrow sense

- what-opacity

- explanations of what the ML system finds in the data, in
order to succeed

- how to use this for fostering scientific progress
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- network dissection (Bau et al, 2017, 2018)

- information bottleneck (Schwartz-Ziv and Tishby, 2017)
« counterfactual explanations (Wachter et al., 2017)

- LIME (Ribeiro et al, 2016)

« concept-attribution vectors (Kim et al., 2018)

+ deep dream (Mordvintsev et al,, 2015)

- data-planing (Chang et al., 2018)

‘Explanation’ in the philosophy of science:

?
T~

- deductive-nomological (Hempel and Oppenheim, 1948)
+ statistical relevance (Salmon, 1970)

+ causal-mechanical (Dowe, 2000; Salmon, 1984)
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- very sketchy
- not aligned with actual XAl methods
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- many evolutionary stories are irrefutable (Gould and
Lewontin, 1979)

- some optimality models can be shown to make testable
predictions (Orzack and Sober, 1994)

- scientific explanations stick their neck out

- why apply less rigorous standards in XAI?
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- taking the X in XAl seriously enables applying rigorous
standards

- especially: testability
- makes sense if we want to trust ML models

- ... and if we want the explanation to relate to reality, not
just the model (broad construal / what-opacity)
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Popper (1959)

- insufficient consideration of holism (Duhem, 1914; Quine,
1951)

- theory-ladenness of the falsifying hypothesis?
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Lakatos (1970)

- what about statistical hypotheses

- measurement (almost?) inevitably introduces
probabilities...
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Gillies (2000)

- non-reproducible effects in HEP: 30 +— 50
- in psychology: re-assessment of replication
- what's the overarching standard?
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Genin (2022)

- value attributions in measurements m = X 4 ¢ correspond
to open sets, m €]JA — 5, A + 4|
- lots of scientific claims aren't falsifiable
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testability lost?

- unlike ‘god exists’, open interval can be turned into closed
one
- varying standards of de facto falsification may be
reasonable:
- large enough amounts of data make effects more likely ~
higher standards required (HEP)
- framing effects etc. introduce different subtleties ~ careful
consideration of reproduction indicated (psychology)
- in general: external values should influence our
willingness to reject hypotheses (Douglas, 2000)

22
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testability lost?

- testability as an incremental process of (dis-)confirmation
(e.g. Sprenger and Hartmann, 2019)

- can happen precisely for the reason that one hypothesis
explains the data better than another (Schupbach, 2016)

23
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Erasmus et al. (2021)
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Erasmus et al. (2021)

Ribeiro et al. (2016)
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- absence/ presence of certain features relevant for single /
dual target prediction

- ‘coherent substructures’ as interpretable representations
- explanatory hypothesis: caffeine / coumarin causally
responsible for dual-target behavior

- requires experimental validation / further testing

- confirmation through literature search
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- XAl can serve the purpose of understanding Al and the
world

- if we want to make headway, we should treat ‘Al
explanations’ with scientific rigor

- for that, they should be probed for predictivity and
empirically tested

- as a matter of fact, this has lead to progress in actual
research
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Thank You!
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