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Modeling and control of complex systems
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* Dynamics governed by partial differential equations (PDEs) depending on space x and time t

— Expensive so simulate
— Even more expensive to solve optimization, control or general multi-query problems

« Aims: 1. Learn efficient models or control laws directly from data
2. Exploit structures (in particular symmetries) in the system dynamics

dortmund Sebastian Peitz | Symmetry-informed modeling and RL of PDEs 2
university



Notation and setting ”

- Dynamics for the PDE state x: Q x [0,T] » R" ¢

plus appropriate boundary and initial conditions 0.0
«  Example Kuramoto-Sivashinsky equation (note the translational symmetry!):

= 49 Q = (0,27)
H1* 652 ds4’ = (et

- Discretization in time:|®(x;) = x; + fk(jjlm N(x(,6) dt = x4

« Control: The right-hand-side has an additional input (or control / action) u: Q x [0,T] » R™:

P N(x,u) or Xpr1 = ©(xp, uy)

p
> Optimize some cost functional: min J(x, u) = Z L(xp,u) S.t. Xy = P(xy, uy)
u k=1



Autonomous Systems: model predictive control vs. reinforcement learning
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« Learn a model ® from data (offline) * Learn a policy = which maximizes the
 Solve control problem online = action u reward (Bellmann principle)

 Evaluate 7 online - action u

real time capability < Challenges - training effort 4




Surrogate model from data: Koopman operator [koopman 1931, Mezic 2005, Rowley et al. 2009]

Bernhard Koopman and John von Neumann proposed already in the 1930s to transfer
operator theoretic concepts from quantum mechanics to classical mechanics:
« We do not directly study the state x of a system, but instead an

observable function f € F with z = f(x)

 The Koopman operator X: F — F then acts linearly on these observables:

(HKf)(x) = f(D(x))
» ltisalinear yet infinite-dimensional operator, even if the original system @ is nonlinear!
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(K )(0x) = f(P(x))

Surrogate model from data: Koopman operator

Koopman

ODE / PDE




Dynamic Mode Decomposition (DMD) (schmid 2010]
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« Learn from time series data x, ..., x5, Mit x;,; = P(xy)
X = [XO xN—l], X = [xl .X'N]

« Suppose there exists a linear Operator K such that X = KX.
Then K = Xx™ minimizes || X — Kx|| . = Simple linear regression

- This matrix K is a finite-dimensional approximation of the Koopman operator!

» the eigenvectors of K approximate eigenfunctions of the Koopman operator
» the complex eigenvalues indicate frequency & growth/decay

A=1091 A= 0.87+0.52i A=0.62+0.78i A =0.45 + 0.944
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MPC

Surrogate model from data: Koopman operator acon '

» The assumption of linearity breaks down quickly! Cén;;o"e;
- But: if we do not study the state x, but sensor data z = f(x) B
and define a basis ¥ for f,

q . . .
_ . _ T Example: Fourier series expansion of f:
) Zi=1cl¢l(x) c (), Y(x) = (sin(x), cos(x) ,sin(xs) , ...)

Then our regression problem becomes annt IRNN s e /AN
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K%&}(qzkﬂ”‘f’(xkﬂ) — K% 10

—> This matrix is a much better approxima 5
- Convergence results
- Error bounds i
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(SVMs) for classification:

* Many applications
» Extensions for control problems — 2
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Group Convolutional EDMD [Harder et al. 2024]

» Assume that we have symmeiries in our system
« Examples: Equivariance to
 Shift, Flips, Rotation (discrete, continuous)

« Formally defined by a symmetry group G and its P
group actions g € G. Examples a ®_>
* G = (R, +): the translation group of continuous shifts .
tmnslatlonl [We”er et al. 2024] ltranslatlon

g-s=s+g
(g-0() =x(g~t-5) = x(s — g) . @—»

convolution

« The cyclic group Z,, of integer shifts:
g-s=(s+g)modn A A &
g € 2y
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Group Convolutional EDMD [Harder et al. 2024]

The cyclic group can also encode shifts...
... on a discretized domain (with periodic boundary conditions)

s ANV

For DMD, this shift equivariance implies that the DMD matrix is circulant.
Instead of learning a matrix, we can learn a convolution kernel!

Hx_ )
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In Extended DMD, this kernel simply has multiple channels — F
N -




Group Convolutional EDMD [Harder et al. 2024]

« Example: the Kuramoto-Sivashinsky equation in 2D

d0x 1

— = N(x) = —Ax — A*’x — —||Vx]|?

3t (x) x — A% — || V|

» Equivariance w.r.t. shifts in both directions (the system is also equivariant w.r.t.

continuous rotations and flips (i.e., E(2)), but we only consider Z,, here)

Simulation

5 n E l ﬂ n i ﬂ n )
0 —6
0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

t=0.00 t = 25.00 t = 50.00 t = T75.00 t = 100.00 t=125.00 t = 150.00 t=175.00




Autonomous Systems: model predictive control vs. reinforcement learning

MPC
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X1 = POxg, ug)

. Learn a model ® from data (offline) Learn a policy = which maximizes the

« Solve control problem online = action u reward (Bellmqnn prmmple)
« Evaluate m online - action u

real time capability < Challenges - training effort 12




SiSilver etlal. 2016] | [Xie et al. 2018]

« The reward function R: X x U -» P(R) - r, determines whether the taken action was
favorable or bad

« Goalin RL: Find a policy m: X - P(U) which maximizes the expected value of the
discounted sum of future rewards (the so-called value) :

m* = argmaxV"™(s) = E, [z YRk
m k=0

Sy = Sl , wherey € [0,1]

« Challenge: Training can be very expensive!
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Example: Rayleigh Béenard convection

O Convection Process

cool air cool air
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Example: Rayleigh Bénard convection Upper wall: T, = Tc [Vignon et al. 2023]

Setup: Compressible flow
between two flat plates
- heated at the bottom
- cooling at the top

=0 Actuation segments: T, = 0 z =27

Bottom wall: Tyot,,, = T

Goal: reduction of the convective heat transport by modification of the bottom temperature
- Assingle agent has many states and 10 actions - expensive
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Can we exploit symmetries? Upper wall: Ty, = Tc [Vignon et al. 2023]

=0 Actuation segments: T, = 0 z =27

Bottom wall: Tyot,,, = T

1. The systemis equivariant under horizontal shifts!
- This is true for any right-hand side V' (x) where the position s does not explicitly show

2. Information (mass, energy, ...) is transported with finite velocity
- For a local decision, it is sufficient to consider only information close by

dortmund
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Convolutional reinforcement Iearning [Peitz, Stenner, Chidananda, Wallscheid, Brunton, Taira 2024]

Advantages:
1. Dimensionality reduction: few inputs, one output

2. Parameter sharing: All agents are identical
3. Transferability to other (i.e., larger) domains!

\
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Example: Rayleigh Bénard convection
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Conclusion

Symmetries can help us to reduce the effort in modeling and control

« Group convolutional DMD
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X =
* Reinforcement learning
aps .
. . :\if Thanks for your attention!
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