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  Aerodynamics          Mechanics              Heat flow

• Dynamics governed by partial differential equations (PDEs) depending on space 𝑥 and time 𝑡
→ Expensive so simulate

→ Even more expensive to solve optimization, control or general multi-query problems

•    Aims: 1. Learn efficient models or control laws directly from data

      2. Exploit structures (in particular symmetries) in the system dynamics

Modeling and control of complex systems
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• Dynamics for the PDE state 𝑥: Ω × 0, 𝑇 → ℝ𝑛:

𝜕𝑥

𝜕𝑡
= 𝒩 𝑥

plus appropriate boundary and initial conditions

• Example Kuramoto-Sivashinsky equation (note the translational symmetry!):

𝜕𝑥

𝜕𝑡
= −𝜇 𝑥

𝜕𝑥

𝜕𝑠
−
𝜕2𝑥

𝜕𝑠2
− 4

𝜕4𝑥

𝜕𝑠4
, Ω = 0,2𝜋 .

• Discretization in time: Φ 𝑥𝑘 = 𝑥𝑘 + 
𝑘𝛥𝑡

𝑘+1 𝛥𝑡
𝒩 𝑥 ⋅, 𝑡 𝑑𝑡 = 𝑥𝑘+1

• Control: The right-hand-side has an additional input (or control / action) 𝑢: Ω × 0, 𝑇 → ℝ𝑚: 

𝜕𝑥

𝜕𝑡
= 𝒩 𝑥, 𝑢 or 𝑥𝑘+1 = Φ(𝑥𝑘 , 𝑢𝑘)

→ Optimize some cost functional: 

Notation and setting 𝑠

𝑡

𝑠

𝑡

min
𝑢

𝐽 𝑥, 𝑢 =
𝑘=1

𝑝

ℓ 𝑥𝑘, 𝑢𝑘 𝑠. 𝑡. 𝑥𝑘+1 = Φ(𝑥𝑘, 𝑢𝑘)
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• Learn a policy 𝜋 which maximizes the

reward (Bellmann principle)

• Evaluate 𝜋 online → action 𝑢

RL

  real time capability   Challenges  → training effort

Autonomous Systems: model predictive control vs. reinforcement learning

             MPC         

• Learn a model Φ from data (offline)

• Solve control problem online → action 𝑢

Real System

(Plant)

state

𝑥

action

𝑢

Controller

𝑥𝑘+1 = Φ 𝑥𝑘, 𝑢𝑘

min
𝑢

𝐽(𝑥, 𝑢)

Real System

(Plant)

Agent

𝑢 = 𝜋(𝑥)

reward 𝑟

state

𝑥

action

𝑢
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Bernhard Koopman and John von Neumann proposed already in the 1930s to transfer

operator theoretic concepts from quantum mechanics to classical mechanics:

• We do not directly study the state 𝑥 of a system, but instead an 

observable function 𝑓 ∈ ℱ with 𝑧 = 𝑓 𝑥

• The Koopman operator 𝒦:ℱ → ℱ then acts linearly on these observables:

𝒦𝑓 𝑥 = 𝑓 Φ(𝑥)

• It is a linear yet infinite-dimensional operator, even if the original system Φ is nonlinear!

Surrogate model from data: Koopman operator [Koopman 1931, Mezic 2005, Rowley et al. 2009] 
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Surrogate model from data: Koopman operator 𝒦𝑓 0𝑥 = 𝑓 Φ(𝑥)

𝑥𝑘

𝑥𝑘+1

𝑓

𝑓

𝒦𝑓Φ

𝑧𝑘

𝑧𝑘+1

ǁ𝑧𝑘

ǁ𝑧𝑘+1

Ψ

P

𝐾
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• Learn from time series data 𝑥0, … , 𝑥𝑁, mit 𝑥𝑘+1 = Φ(𝑥𝑘)

𝑋 = 𝑥0 … 𝑥𝑁−1 , 𝑋 = 𝑥1 … 𝑥𝑁

• Suppose there exists a linear Operator 𝐾 such that 𝑋 = 𝐾𝑋. 

Then K = 𝑋𝑋† minimizes 𝑋 − 𝐾𝑋
𝐹
⇒ Simple linear regression

→ This matrix 𝐾 is a finite-dimensional approximation of the Koopman operator!

• the eigenvectors of 𝑲 approximate eigenfunctions of the Koopman operator

• the complex eigenvalues indicate frequency & growth/decay

Dynamic Mode Decomposition (DMD) [Schmid 2010] 

𝑡0 𝑡1 𝑡2 𝑡𝑁…
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• The assumption of linearity breaks down quickly!

• But: if we do not study the state 𝑥, but sensor data 𝑧 = 𝑓(𝑥)
and define a basis 𝛹 for 𝑓,

𝑓 𝑥 = 
𝑖=1

𝑞

𝑐𝑖𝜓𝑖(𝑥) = 𝑐⊤𝛹 𝑥 ,

Then our regression problem becomes another regression problem:

𝑚𝑖𝑛
𝐾∈ℝ𝑞×𝑞


𝑘=1

𝑁−1

𝛹 𝑥𝑘+1 − 𝐾𝛹 𝑥𝑘
2

→ This matrix is a much better approximation

→ Convergence results

→ Error bounds

• Analogy to Support Vector Machines 

(SVMs) for classification:

• Many applications

• Extensions for control problems

[Williams et al. 2015], [Korda & Mezic 2018], [Klus, Nüske, Peitz et al 2020], [Nüske, Peitz et al. 2023], [Zhang & Zuazua 2023]

Example: Fourier series expansion of 𝑓: 
Ψ 𝑥 = sin 𝑥 , cos 𝑥 , sin 𝑥𝑠 , …

Surrogate model from data: Koopman operator
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Group Convolutional EDMD [Harder et al. 2024] 𝑠

𝑡

[Weiler et al. 2024] 

• Assume that we have symmetries in our system

• Examples: Equivariance to

• Shift, Flips, Rotation (discrete, continuous)

• Formally defined by a symmetry group 𝒢 and its

group actions 𝑔 ∈ 𝒢. Examples

• 𝒢 = ℝ,+ : the translation group of continuous shifts

g ⋅ 𝑠 = 𝑠 + 𝑔
𝑔 ⋅ 𝑥 𝑠 = 𝑥 𝑔−1 ⋅ 𝑠 = 𝑥 𝑠 − 𝑔

• The cyclic group ℤ𝑛 of integer shifts:

𝑔 ⋅ 𝑠 = s + g mod n
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𝑠

𝑡
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Group Convolutional EDMD [Harder et al. 2024] 

• The cyclic group can also encode shifts…

• … on a discretized domain (with periodic boundary conditions)

𝑔 ⋅ 𝑠𝑖 = 𝑠 𝑔⋅𝑖 = 𝑠𝑖+1

• For DMD, this shift equivariance implies that the DMD matrix is circulant.

• Instead of learning a matrix, we can learn a convolution kernel!

𝑥 = ∗ 𝑥

• In Extended DMD, this kernel simply has multiple channels
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Group Convolutional EDMD [Harder et al. 2024] 

• Example: the Kuramoto-Sivashinsky equation in 2D

𝜕𝑥

𝜕𝑡
= 𝒩 𝑥 = −Δ𝑥 − Δ2𝑥 −

1

2
∇𝑥 2

• Equivariance w.r.t. shifts in both directions (the system is also equivariant w.r.t. 

continuous rotations and flips (i.e., 𝐸 2 ), but we only consider ℤ𝑛 here)
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• Learn a policy 𝜋 which maximizes the

reward (Bellmann principle)

• Evaluate 𝜋 online → action 𝑢

RL

  real time capability   Challenges  → training effort

Autonomous Systems: model predictive control vs. reinforcement learning

             MPC         

• Learn a model Φ from data (offline)

• Solve control problem online → action 𝑢

Real System

(Plant)

state

𝒙

action

𝑢

Controller

𝑥𝑘+1 = Φ 𝑥𝑘, 𝑢𝑘

min
𝑢

𝐽(𝑥, 𝑢)

Real System

(Plant)

Agent

𝑢 = 𝜋(𝑥)

reward 𝑟

state

𝑥

action

𝑢
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• Reinforcement learning (RL): Solution of a sequential 

decision making problem → Markov Decision Process (MDP)

Φ: 𝒳 × 𝒰 → 𝑃 𝒳

• For a state 𝑥𝑘 ∈ 𝒳 and an action 𝑢𝑘 ∈ 𝒰 at time 𝑡 = 𝑘Δ𝑡, Φ defines the (stochastic) state 

transition of the system

• The reward function ℛ: 𝒳 × 𝒰 → 𝑃 ℝ  → 𝑟𝜏 determines whether the taken action was 

favorable or bad

• Goal in RL: Find a policy 𝜋:𝒳 → 𝑃 𝒰  which maximizes the expected value of the 

discounted sum of future rewards (the so-called value) :

𝜋∗ = argmax
𝜋

𝑉𝜋 𝑠 = 𝔼𝜋 ฬ
𝑘=0

∞

𝛾𝑘𝑟𝜏+𝑘 𝑠𝜏 = 𝑠 , where 𝛾 ∈ [0,1]

• Challenge: Training can be very expensive!

Reinforcement learning

Sebastian Peitz ∣ Symmetry-informed modeling and RL of PDEs

[Xie et al. 2018][Silver et al. 2016]
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Example: Rayleigh Bénard convection

Sebastian Peitz ∣ Symmetry-informed modeling and RL of PDEs
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Setup: Compressible flow 

between two flat plates 

→ heated at the bottom 

→ cooling at the top

Goal: reduction of the convective heat transport by modification of the bottom temperature

→ A single agent has many states and 10 actions → expensive

[Vignon et al. 2023]Example: Rayleigh Bénard convection

Sebastian Peitz ∣ Symmetry-informed modeling and RL of PDEs
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1. The system is equivariant under horizontal shifts!

→ This is true for any right-hand side 𝒩(𝑥) where the position 𝑠 does not explicitly show

2. Information (mass, energy, …) is transported with finite velocity

→ For a local decision, it is sufficient to consider only information close by

Can we exploit symmetries?

Sebastian Peitz ∣ Symmetry-informed modeling and RL of PDEs

[Vignon et al. 2023]
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𝑢(𝑥)

𝑢1 𝑢𝑀𝑢2

Advantages:

1. Dimensionality reduction: few inputs, one output

2. Parameter sharing: All agents are identical

3. Transferability to other (i.e., larger) domains!

Convolutional reinforcement learning [Peitz, Stenner, Chidananda, Wallscheid, Brunton, Taira 2024]

Sebastian Peitz ∣ Symmetry-informed modeling and RL of PDEs
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Example: Rayleigh Bénard convection
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Symmetries can help us to reduce the effort in modeling and control

• Group convolutional DMD

𝑥 = ∗ 𝑥

• Reinforcement learning

Thanks for your attention!

Conclusion

Sebastian Peitz ∣ Symmetry-informed modeling and RL of PDEs
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