N SITA
L SAIL &y [

SUSTAINABLE LIFE-CYCLE OF ,
BN Faculty of Technology

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Surrogate modeling:
Accelerating Scientific Discovery with
Machine Learning

Michiel Straat
Machine Learning Group, Bielefeld University

Lamarr Lab Visits 2025
18.02.2025



IOutIine of the session @

Discussing Machine Learning in physics applications and using physics to improve Machine Learning

= Talks (14:30-15:30)
« Surrogate modeling using Machine Learning (Michiel Straat)
* Physics-informed machine learning (Thorben Markmann)

 Application of physics-informed ML in Water Distribution Networks
(André Artelt)

« Symmetry-Informed Reinforcement Learning (Sebastian Peitz)
= Time for discussion (15:30-)



Ilntroduction to Surrogate Modeling

= A surrogate model approximates a more complex or expensive model, and it is used to accelerate simulations,
optimization, and decision-making.
= Often used when direct simulations or experiments are too costly
» Reinforcement learning environments
« Parameter studies and inverse problems.

= Examples and application areas:
« Climate science: Estimating climate patterns based on computationally intensive weather simulations.

« Engineering: Predicting the behavior of an aircraft wing under different conditions without running full CFD
simulations.

« Material science: Predicting material properties without running full molecular dynamics simulations.
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IWeather prediction

2018-01-08

Ground truth

1-month-long rollout of SFNO. Surface windspeed predictions with SFNO and
ground truth data are compared to each other, trained on the ERAS dataset.
1 year rollout (1460 steps), takes about 13 minutes



Ensemble Weather Forecast

= simulations with many slightly different initial conditions and
model detalls (parameter studies)

» Gives possible developments (e.g. different tracks of a storm) and
uncertainty quantification.

https://developer.nvidia.com/blog/ai-accurately-forecasts-extreme-weather-up-to-23-days-
ahead/
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IAppIication area: Inverse problems @

= Determine unknown inputs from observed outputs.

= Examples are in engineering: airfoil optimization, ocean current
prediction from sparse temperature measurements.

= Surrogates help in solving the problem by:
« Rapid forward evaluations: y = f(0) = s(60)
 Approximating the inverse mapping directly: 8 = f~1(y) = s(6)
* (Combine both approaches).



II\/IaChine Learning and Surrogate Modeling @

= Traditional models: polynomial approximations, kriging, Reduced Order Models (ROMS).

= Big-data and compute era: ML-based models, such as (Convolutional) Neural Networks,
Gaussian Processes, Neural Operators.

= ML techniques can capture complex, high-dimensional dependencies that traditional
methods struggle with.

= After the computational effort of training, the models provide very fast predictions.

= Surrogate models can be fully data-driven or include physics to accelerate training,
Improve generalization and alleviate data requirements.



ISurrogate modeling In Reinforcement Learning @

= Many RL environments rely on expensive simulations (e.g.
robotics, autonomous systems, finance).

* Model-Based Reinforcement Learning

« Surrogate models (a.k.a. World Models) make training more efficient by
approximating system dynamics.



Case study: ML surrogate modeling in fluid dynamics
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(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space
by a neural network P. 2. Apply four layers of Tntegral operators and activation functions. 3. Project back to
the target dimension by a neural network Q). Output u. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform JF; a linear transform R on the lower Fourier modes and filters out the higher modes;
then apply the inverse Fourier transform F . On the bottom: apply a local linear transform W.

Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.



IPredicting convection patterns

spatial y

Temperature Field at t=0. Max velocity: 0.000
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IResuIts FNO Ra = 2 * 10°
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GT normalized SSE

Parameter Value Parameter Value

Hidden channels Nr Episodes

Lifting channels 64 Projection 64
Channels

Nr Layers 6 Seq. Delay 0.7

Nr Modes x 16 Seq. Length 2

Nr Modes y 16

Performance of prediction model at the start of the test episodes
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IChaIIenges INn Surrogate Modeling @

= Generalization beyond the training data.

= Integrate physical constraints and domain knowledge into ML
models (increase generalization and data efficiency)

* Physics Informed Neural Networks

« Hybrid Al-Simulation: e.g. in computation fluid dynamics, Al-based
surrogate model predicts turbulence behavior while the rest of the
simulation is handled by classical numerical solvers.

= Transfer learning: Encourage re-use of surrogate models for
slight changes in tasks or domains, fine-tune to problem
specifics using small datasets. Sim-to-Real Transfer.
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ISummary @

= Surrogate models enable faster and more efficient simulations.

= Machine learning-based surrogates have shown impressive
results for high-dimensional problems.

= Open guestion: How to best combine physics, machine learning
and domain expertise?
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Thank you for your attention!

Contact:
Michiel Straat
mstraat@techfak.uni-bielefeld.de
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