Context-Based Meta Reinforcement Learning for Robust and Adaptable Peg-in-Hole Assembly Tasks

Authors: Ahmed Shokry, Walid Gomaa, Tobias Zaenker, Murad Dawood, Rohit Menon, Shady A. Maged, Mohammed I. Awad, Maren Bennewitz

Humanoid Robots Lab, University of Bonn

Motivation

Peg-in-Hole Assembly

- ▶ Peg-in-hole (PiH) assembly is a core task for industrial and service robots
- ▶ **Uncertainty** in the hole position and orientation due to **sensor errors** represents a challenge for PiH assembly tasks in **unknown** environments

Meta Reinforcement Learning

- ▶ **Meta** reinforcement learning (RL) can infer and adapt to **unknown** task parameters and different rewards. However, it is **sample-inefficient**
- ▶ PEARL meta RL agent uses the context data to infer the unknown task parameters
- ▶ Observation o is the distance between the peg and the estimated noisy hole position
- ► Reward **r** is the distance between the peg and the **actual hole** position, which is **unknown** during test time

Context Encoder Context Data Buffer $(o,a,o',r)_n$ Action Context Encoder Posterior Gaussian Distribution over the Latent Space $(o,a,o',r)_2$ μ_2 σ_2 σ_2 σ_3 σ_4 Policy Policy Current Observation

Challenges and Contributions

Challenges

- ▶ immeasurable **reward**, due to the unknown hole position, results in a sample-inefficient adaptation during **test** time
- ▶ PEARL has a very limited **generalization** to out-of-distribution (OOD) tasks with more **uncertainty** in the hole position than that of the training tasks

Contributions

- ▶ Replace the reward in the context data with the **motion** towards the actual hole **m** due to the last action, **enhancing** the agent's ability to infer the task
- ► The motion **m** is calculated using the robot forward kinematics and hole features in **2D images** without requiring depth information, enhancing real-world **applicability**
- ▶ Replace the **meta-trained** context encoder with a **new** encoder that uses **force/torque** sensor readings and trained using a **limited** number of real-world data
- ▶ Propose a **fine-tunning** method that **pushes** the posterior distribution towards latent variables with **high** motion towards the actual hole **m** to safely and gradually adapt to **OOD** tasks

Tasks with the same reward require opposite actions

Tasks with the same motion towards the actual hole **m** require slightly different actions

Uncertain and wide posterior

More certain posterior Gaussian distribution

Results

Effect of Context Data Modification on the Training Efficiency

▶ Our modified agent achieves **higher return** in a **smaller** number of epochs

Real-World Adaptation Performance

▶ Our modified agents show higher success rate and more consistent performance

Out-of-Distribution Adaptation

▶ Our proposed method gradually and consistently **explores** the **latent space** and adapts to tasks with uncertainty up to **10x** more than that of the training tasks

Summary

- ► Our approach **enhances** the performance of the context-based **meta RL** agent in **PiH** assembly tasks
- ▶ We enhance the **sample efficiency** of the meta RL agent by **modifying** the context data used to infer the unknown task parameters
- ► The proposed modified context can be measured in the **real world** using an **uncalibrated** camera or a force/torque sensor enhancing the real-world **applicability**
- ► Context-based meta RL is known for its **limited** generalization to **OOD** tasks, that is why a safe and gradual latent space **exploration** method is proposed
- Experiments in simulation and in the real world prove the effect of the proposed methods in enhancing **training efficiency**, real-world **adaptation** performance, and out-of-distribution **generalization** capabilities of the meta RL agent

Contact

Ahmed Shokry
shokry@cs.uni-bonn.de
Humanoid Robots Lab
University of Bonn
Germany

Partner institutions:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

