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Abstract
Multi-Agent Path Finding (MAPF) focuses on de-
termining conflict-free paths for multiple agents
navigating through a shared space to reach speci-
fied goal locations. This problem becomes compu-
tationally challenging, particularly when handling
large numbers of agents, as frequently encoun-
tered in practical applications like coordinating
autonomous vehicles. Quantum Computing (QC)
is a promising candidate in overcoming such lim-
its. However, current quantum hardware is still in
its infancy and thus limited in terms of comput-
ing power and error robustness. In this work, we
present the first optimal hybrid quantum-classical
MAPF algorithms which are based on branch-and-
cut-and-price. QC is integrated by iteratively solv-
ing QUBO problems, based on conflict graphs.
Experiments on actual quantum hardware and
results on benchmark data suggest that our ap-
proach dominates previous QUBO formulations
and state-of-the-art MAPF solvers.

1. Introduction
Emerging domains of large-scale resource allocation prob-
lems, such as assigning road capacity to vehicles, ware-
house management or 3D airspace to Unmanned Aerial
Vehicles (UAVs), often require Multi-Agent Pathfind-
ing (MAPF) (Stern et al.; Choudhury et al.; Li et al., c) to
determine feasible allocations. MAPF involves calculating
non-colliding paths for a large number of agents simulta-
neously, presenting significant computational challenges in
realistically sized scenarios. These challenges are becoming
increasingly relevant in case of large-scale real-world ap-
plications. E.g., future UAV traffic in urban environments,
driven by parcel delivery demands, is expected to involve
managing thousands of flight paths (Doole et al., 2020).
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The scalability of optimal state-of-the-art MAPF solvers is
limited, since finding optimal solutions is NP-hard (Sharon
et al.). Thus one often falls back to suboptimal or anytime
methods (Li et al., a;b; Huang et al.; Okumura, 2023b;a;
Li et al., 2021). Even though such methods are compu-
tationally efficient in finding a feasible solution, the solu-
tion quality can be insufficient which implies the urge for
optimal solution methods. By reformulating MAPF as a
multi-commodity flow problem, it can be solved optimally
via Integer Linear Programming (ILP). However, the re-
duction uses an inefficient representation of the problem
setting in terms of space complexity and is only effective
on small instances. More popular techniques for optimal
MAPF include Conflict-based Search (CBS) (Sharon et al.)
and Branch-and-Cut-and-Price (BCP) (Lam et al., b). CBS
is a two-level procedure, with splitting a search tree based
on detected conflicts between agents and subsequent replan-
ning. This tree is explored with best-first search until a
collision-free node is found. BCP takes a different approach
of considering a (possibly infeasible) solution which is then
refined iteratively by successively adding paths and con-
straints. Similarly to CBS, BCP is a two-level algorithm: on
the low level it solves a series of single-agent pathfinding
problems, while the high level uses ILP to assign feasible
paths to agents. While low level single agent pathfinding
can be performed efficiently, the high level problems of both
CBS and BCP remain NP-hard.

Quantum Computing (QC) is considered promising for
tackling certain NP-hard Combinatorial Optimization (CO)
problems. This is due to its potential to leverage quantum
phenomena to solve certain types of problems faster than
classical methods. The quantum mechanical effect of su-
perposition enables exploration of a vast solution space in
parallel, which is particularly advantageous for finding the
best solution from a large set of possibilities. During this
exploration quantum entanglement allows the encoding of
high-order relationships among problem variables, leading
to an effective exploration of the solution space. In par-
ticular, QC is suited for solving Quadratic Unconstrained
Binary Optimization (QUBO) problems (Punnen, 2022)

min
z∈{0,1}n

z⊤Qz , (1)

where Q is an n × n real matrix and n is the number of
qubits. Despite this simple problem structure, it is NP-
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PricingSeparation

(a) Initialize paths. (b) Identify conflicts. (c) Generate paths. (d) Solve QUBO. (e) Final solution.

Figure 1: Schematic visualization of our quantum MAPF algorithm. (a) First, initial paths are generated for every agent with possible
conflicts. (b) We enter the outer loop (separation), where we identify conflicts between paths and add them to the problem. (c) In the
pricing step, we generate new paths for every agent and (d) find the best set of paths by solving a QUBO problem. This inner loop is
repeated until adding a new path cannot improve the solution quality, while the outer loop is terminated when our set of chosen paths has
no conflicts. (e) By construction, a conflict-free optimal set of paths is returned.

hard and hence encompasses a wide range of real-world
problems, such as chip design (Gerlach et al., 2024), flight
gate assignment (Stollenwerk et al., a) and trajectory plan-
ning (Stollenwerk et al., b).

One prominent QC method is Adiabatic Quantum Comput-
ing (AQC), which is grounded in the adiabatic theorem (Al-
bash & Lidar, 2018). This theorem states that a quantum
system will remain in its ground state if its Hamiltonian
changes slowly enough and there is a sufficient energy gap
from excited states. The problem is encoded into the final
Hamiltonian, and the system is evolved gradually from an
initial Hamiltonian. If done adiabatically, the system ends
in the ground state of the problem Hamiltonian, which cor-
responds to the optimal solution. Approximations for AQC
can be obtained by either using digital QC hardware, such
as the Quantum Approximate Optimization Algorithm (Farhi
et al., 2014), or by purposefully built analog devices, such
as Quantum Annealers (Johnson et al., 2011). Despite QC’s
promise, we find ourselves in the Noisy Intermediate-scale
Quantum (NISQ) (Preskill, 2018) era. QC devices face
challenges including error rates, limited computing power
and restricted hardware topology, which lead to suboptimal
solutions obtained with currently available hardware.

In this paper, we investigate the use of hardware-aware QC
for MAPF by constructing two optimal hybrid quantum-
classical algorithms based on QUBO subproblems. To the
best of our knowledge, these are the first quantum algo-
rithms for MAPF. We call our algorithms QUBO-and-
Price (QP) and QUBO-and-Cut-and-Price (QCP) which
are based on the idea of BCP. We iteratively add paths (and
constraints) to the problem and solve a QUBO, which leads
to the applicability of QC. This gives us an upper bound
on the best possible solution and a stopping condition tells
us when our set of paths contains the optimal solution. An
overview of QCP can be found in Fig. 1. Even though cur-

rent quantum hardware is still limited, our framework is
modular and designed to be compatible with future devices.

Our contributions can be summarized as follows:

• Two novel optimal hybrid quantum-classical MAPF
algorithms (QP and QCP), which iteratively solve re-
stricted ILP problems by using QUBO,

• An optimality criterion with proof, generalizing the
pricing problem of classical column generation,

• Hardware-aware QUBO formulations for the restricted
ILP problems with using the concept of conflict graphs,
leading to parallel solvable independent subproblems,

• Extensive experiments on benchmark datasets which
show the superiority of our method over previous
QUBO approaches on real quantum hardware and state-
of-the-art MAPF solvers.

2. Related Work
Our algorithms are based on BCP (Lam et al., b). Despite
their optimality, such algorithms require a sophisticated
branching strategy and are not guaranteed to find a good
solution in reasonable time. An anytime adaption of MAPF
BCP has been investigated (Lam et al., a), but further in-
vestigation of optimal anytime algorithms is of great in-
terest (Okumura, 2023a). Heuristics are used for avoiding
exponentially many branching steps, leading to efficient
suboptimal algorithms (Sadykov et al.). However, such
rounding heuristics can lead to unsatisfying results, making
the investigation of QC for this task intriguing.

QC is a promising candidate for large-scale planning prob-
lems (Stollenwerk et al., a; Li et al., 2024). In the area
of multi-agent problems, flow-problem formulations have
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been investigated (Ali et al., 2024; Zhang et al., 2021; Tar-
quini et al., 2024; Davies & Kalidindi). These methods are
edge-based, that is each edge in the spatio-temporal graph
is represented by a qubit. Even though certain constraints
can be integrated into the quantum state in this framework,
the problem size is way beyond current QC hardware capa-
bilities and also infeasible for near-term devices.

Instead of representing all edges in the given graph, a dif-
ferent approach is taken in (Martı́n & Martin) by consider-
ing which path to choose as decision variables. This leads
to introducing a QUBO formulation for the Unsplittable
Multi-Commodity Flow problem by directly integrating the
inequality constraints. Similar to BCP, they iteratively add
paths to their problem. However, they present no theoret-
ically sound criterion on when to stop, but have to rely
on suboptimal heuristics. Furthermore, the large amount
of constraints have to be incorporated into the QUBO for-
mulation which either leads to a huge number of auxiliary
variables or the need for an iterative optimization scheme
to adapt Lagrangian parameters (Mücke & Gerlach, 2023).
The authors of (Stollenwerk et al., b; Huang et al., 2022)
circumvent this problem by using conflict graphs for rep-
resenting possible constraints. However, their methods are
not directly applicable to the MAPF setting, since only the
starting times of preplanned trajectories are optimized.

We combine the ideas of an iteratively expanding path-based
approach with the concept of conflict graphs. A pricing
criterion tells us when all variables are included which are
part of an optimal solution. The proof is based on (Rönnberg
& Larsson), which however assumes negativity on reduced
costs. We loosen this assumption and adapt it for general
applicability to MAPF.

3. Background
For notational convenience, we onforth denote matrices
as bold capital letters (e.g. A), vectors as bold lowercase
letters (a) and define B ..= {0, 1}. Furthermore, let 1 de-
note the vector consisting only of ones, with the dimension
following from context. Lastly, let ⪯ denote entry-wise
inequality between vectors, i.e., a ⪯ b ⇔ ai ≤ bi ∀i. The
following sections will formalize MAPF (Sec. 3.1) and give
a mathematical formulation of how to solve it (Sec. 3.2).

3.1. Multi-Agent Pathfinding

The input to the MAPF problem is a set of agents A, a
weighted undirected graph G = (V,E) and an origin-
destination pair for each agent. The graph G captures the
underlying environment, where all possible agent states (e.g.
location) are represented by V and E can be regarded as
valid transitions from one state to another, with an under-
lying cost. V already captures environmental constraints,

such as possible obstacles, while E captures motion con-
straints of the agents, e.g., velocity and maximum turning
rates of UAVs. The goal of MAPF is now to find optimal
paths from the origin to the destination for each agent, s.t.
they avoid pairwise conflicts. For rating optimality, we use
the objective of the sum of all weighted path lengths. We
here consider classical collision conflicts, that is the vertex
conflict and the (swapping) edge conflict. A vertex conflict
between two agents exists if they move to the same node at
the same time, while an edge conflict prohibits two agents
to use the same edge at the same time. Introducing the time
component, we allow the agents to start at different points
in time, while also giving them the opportunity to wait at a
certain location.

For finding a solution to the MAPF problem, a spatio-
temporal directed graph formulation is typically used. That
is, we define GT = (VT , ET ) as the graph, with nodes
v = (s, t) ∈ V × {1, . . . , T} and edges e = (v, v′) =
((s, t), (s′, t + 1)) ∈ VT × VT with weights we = w(s,s′),
where (s, s′) ∈ E and T ∈ N is a maximum allowed time
horizon. We define the reverse edge of e = (s, t), (s′, t+1)
as ē ..= (s′, t), (s, t+1) for representing edge conflicts. GT

is an acyclic weighted directed graph with |VT | = T |V |
and |ET | = O (ST |V |), where S is the average number of
possible state transitions. For example, if we consider the
classical two-dimensional grid environment, an agent has
five possible state transitions, i.e., wait, go north, go east,
go south and go west.

Every agent a ∈ A is obliged to find a path in GT from
origin (oa, ta) ∈ VT to destination (da, ta + Ta) ∈ VT

for a starting time ta ∈ [T ] and Ta ≤ T − ta. A path
p is a sequence of edges p ..= (e1, . . . , eTa−1), s.t. et =
((x, ta+ t), (y, ta+ t+1)), et+1 = ((y, ta+ t+1), (z, ta+
t+2)), e1 = ((oa, ta), (s, ta+1)) and eTa

= ((s, ta+Ta−
1), (da, ta + Ta)). The cost/length cp of a path p is defined
as the sum of all its edge weights, i.e., cp ..=

∑
e∈p we.

Specifically, we go over to the mathematical description of
the MAPF objective.

3.2. Path-Based Formulation

We encode each possible path p ∈ P for every agent by
zp ∈ B. An ILP formulation is given by:

MP : min
z∈BN

∑
a∈A

∑
p∈Pa

cpzp (2a)

s.t.
∑
p∈Pa

zp = 1, ∀a ∈ A (2b)

∑
a∈A

∑
p∈Pa

xp
vzp ≤ 1, ∀i ∈ VT (2c)

∑
a∈A

∑
p∈Pa

(ype + ypē ) zp ≤ 1, ∀e ∈ ET , (2d)
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where xp
v, y

p
e ∈ B indicate whether path p visits vertex

v ∈ VT / edge e ∈ ET , Pa indicates the set of all possible
paths for agent a and N = |P|, P =

⋃
a∈A |Pa|. Note

that xp
v, y

p
e are constant and we just optimize over zp. The

constraint in (2b) ensures that exactly one path is chosen
for every agent, while (2c) and (2d) avoid conflicts. We
denote (2) as the Master Problem (MP).

We have |VT | constraints for avoiding vertex conflicts and
|ET | constraints for avoiding swapping conflicts. The num-
ber of our decision variables representing possible solutions
now corresponds to the number of all possible paths for all
agents, which is exponential in the maximum time horizon,
N = O(|A|ST ). A large maximum time T or number of
agents |A| can make the problem size increase very quickly,
making it infeasible to solve it with current NISQ devices.

4. Methodology
Not only the huge number of decision variables poses a chal-
lenge for current quantum computers, but also the number of
constraints strongly impacts the solvability of the resulting
QUBO formulation. We overcome this issue by considering
the Restricted Master Problem (RMP) which optimizes over
a subset of decision variables

RMP : min
z∈Z

c⊤z (3a)

s.t. Dz ⪯ 1 , (3b)

with Z ..= {z ∈ Bn :
∑

p∈Pa
zp = 1, ∀a ∈ A}, Pa ⊂ Pa,

n = |P |, P =
⋃

a∈A Pa and c ∈ Rn is the vector consisting
of the corresponding path lengths. The constraint matrix D
captures inequality constraints from (2):

Di,p =

{
xp
i , if i ∈ VT ,

ypi + yp
ī
, if i ∈ ET .

To get equivalence between (3) and (2), we use a two-loop
iterative optimization scheme: the outer loop decides which
constraints are not fulfilled and should be added to our prob-
lem and the inner loop optimizes over subsets of all possible
paths for every agent, increasing the number of paths in
every step (see Fig. 1 and Algorithm 1). This procedure
builds with the hope that we already find a (nearly) optimal
solution with not exploring the whole search space, both in
terms of decision variables n and number of constraints m.
The mathematical framework describing this technique is
called Column/Row Generation (Lübbecke). The columns
are identified with the decision variables and the rows with
the constraints. It alternatingly solves a high-level (RMP)
and low-level Pricing and Separation problems (PP and SP),
which decide which variables/constraints to add to the MP.
If solving the PP/SP tells us to not add any more variables,
the solution to the MP is optimal by construction.

Algorithm 1 QUBOANDPRICEANDCUT

Input: Shortest independent paths P and z = 1
Output: Optimal feasible solution
1: C ← ∅
2: while z is infeasible do ▷ Separation
3: Add violated constraints to C
4: while not (5) do ▷ Pricing
5: p∗ ← argminp c̄p(λ, C) ▷ Shortest path
6: P ← P ∪ {p∗}
7: λ← OPTIMIZELAGRANGIAN(P,C) ▷ Solve (8)
8: z ← OPTIMIZEMASTER(P,C) ▷ QUBO (Sec. 4.3)
9: end while

10: end while

This method was developed for Linear Program-
ming (LP) (Dantzig) without the restriction of integrality
of the variables—in our case we do not optimize over the
continuous domain [0, 1] but over the binary values {0, 1}.
To cope with these kind of ILP problems, branching meth-
ods, such as BCP (Desrosiers & Lübbecke), are used. In the
worst case, exponentially many branching steps are needed.
We circumvent this problem by considering solutions to the
ILP MP, instead of the relaxed LP version. Ideally, we want
n ≪ N , while an optimum of RMP is also an optimum of
MP. The next section governs how to add new paths to our
problem and check whether a solution is equivalent.

4.1. Pricing

Instead of using a relaxed LP formulation for the PP, we
use Lagrangian Relaxation (LR) (Wolsey, 2020), which can
be used for ILP problems of the form in (3). The partial
Lagrangian is given by L(z,λ) ..= c⊤z + λ⊤ (Dz − 1),
λ ∈ Rm

+ and the LR of the RMP is defined as

LR : L(λ) ..= min
z∈Z

L(z,λ) = min
z∈Z

c̄(λ)⊤z − λ⊤1 , (4)

where c̄(λ) ..= c + λ⊤D is the Lagrangian reduced cost
vector. Note that L(λ) ≤ v(RMP), where v(·) indicates the
optimal value of the optimization problem.

Theorem 4.1. Let v̂ be the objective value of a feasible
solution z̄ to RMP (Dz̄ ⪯ 1, z̄ ∈ Z and v̂ = c⊤z̄) and
λ ∈ Rm

+ . If v(RMP) ̸= v(MP) then

∃a ∈ A : min
p∈Pa\Pa

c̄p(λ)− min
p∈Pa

c̄p(λ) < v̂ − L(λ) . (5)

Proof. We give a proof by showing that v(RMP) = v(MP)
holds if (5) does not hold. The path variables not in RMP
are implicitly assumed to take the value 0. Assume now,
that one variable not included in the RMP takes value 1 for
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agent a ∈ A, i.e.,
∑

p∈Pa\Pa
zp ≥ 1. It follows that

v(MP) =min
z∈Z

∑
p∈P

cpzp : Dz ⪯ 1,
∑
p∈P̄a

zp ≥ 1

 (6a)

≥min
z∈Z

L(z,λ) :
∑
p∈P̄a

zp ≥ 1

 (6b)

=min
z∈Z

∑
p∈P

c̄p(λ)zp :
∑
p∈P̄a

zp ≥ 1

− Cλ (6c)

=min
z∈Z

∑
p∈P\Pa

c̄p(λ)zp + min
p∈P̄a

c̄p(λ)− Cλ (6d)

=
∑

b∈A\{a}

min
p∈Pb

c̄p(λ) + min
p∈P̄a

c̄p(λ)− Cλ (6e)

= min
p∈P̄a

c̄p(λ)− min
p∈Pa

c̄p(λ) + L(λ) (6f)

≥v̂ ≥ v(RMP) , (6g)

with P̄a = Pa \ Pa, Cλ = λ⊤1 and Z = {z ∈ BN :∑
p∈Pa

zp = 1, ∀a ∈ A}. (6g) holds since we assume
that (5) does not hold. We follow that no feasible solution
to MP with

∑
p∈Pa\Pa

zp ≥ 1 can be better than an optimal
solution to RMP for each a ∈ A. As all paths not included in
the RMP are in the set

⋃
a∈A Pa\Pa and v(MP) ≤ v(RMP)

is always true, we conclude v(MP) = v(RMP). Hence, if
v(MP) ̸= v(RMP) then (5) holds.

This theorem leads to an optimality criterion, telling us when
the variables in the RMP contain the ones for an optimal
solution to the MP. The pricing problem (PP) aims to find a
path not included in the RMP with optimal reduced costs

PP : min
p∈Pa\Pa

c̄p(λ), ∀a ∈ A . (7)

Even though Pa \ Pa can be exponentially large, (7) can be
solved efficiently. It boils down to a k shortest path problem
(k ≤ |Pa|) on the graph GT with updated edge weights—λe

is added to the cost of we and wē for conflicted edges and λv

is added to all incoming edges to conflicted vertices in the
current solution z̄. This can be done efficiently, e.g. using
Yen’s algorithm (Yen), which dynamically updates the new
shortest path using the already computed paths, obtained
with A*.

Interestingly, (5) generalizes the stopping criterion in clas-
sical column generation. The RHS is an upper bound
on the optimality gap between the RMP and LD, i.e.,
v(RMP) − v(LD) ≤ v̂ − L(λ). If that gap is 0, we ex-
actly recover the criterion given in (Lam et al., b) given
by c̄p − αa < 0, where αa = minp∈Pa

c̄p(λ) is the dual
variable corresponding to the convexity constraint of agent
a (2b). In typical column generation, the pricing is solved

with an optimal dual solution of the LP relaxation of the
RMP (Lam et al., b). In our case, we solve the Lagrangian
dual (LD)

LD : max
λ∈Rm

+

L(λ) = max
λ∈Rm

+

min
z∈Z

L(z,λ) . (8)

Due to standard ILP theory (Geoffrion, 2009), the optimum
of LD and the LP relaxation of RMP coincides, since Z
is convex. Also, the dual parameters of this LP relaxation
exactly correspond to the optimal λ∗. Instead of relying
on optimal Lagrange parameters, our theorem allows any
choice of λ ∈ Rm

+ .

4.2. Separation

In addition to adding new paths to our RMP, we can take
a similar approach with handling the constraints. Starting
off with no inequality constraints ((2c) and (2d)), we can
iteratively add them to the RMP, reducing computational
overhead. Given a feasible solution z̄ to the RMP, we check
whether it is also feasible for the MP. That is, we add the
row/constraint Diz̄ ≤ 1 to the RMP if Diz̄ > 1, ∀i ∈ VT∪
ET . However, to ensure that our algorithm is optimal, we
need to find an optimal solution w.r.t. the current constraints.
If this cannot be guaranteed, Algorithm 1 can diverge to a
suboptimal solution. The performance of this procedure is
evaluated in Sec. 5.

4.3. Solving RMP with QUBO

It remains to clarify how to obtain a solution of (3). In fact,
solving the RMP (Algorithm 1, Line 8) is the main computa-
tional bottleneck of our developed algorithm, since finding
shortest paths (Algorithm 1, Line 5) and solving an LP prob-
lem (Algorithm 1, Line 7) can be done efficiently. Since
we want the solutions to be solvable with QC, we reformu-
late the constrained problems into QUBO formulations. We
have a look at three different approaches, which all rely on
using penalty factors to integrate constraints. The one-hot
constraint given in Z (2b) can be integrated by using

min
z∈Z

c⊤z ⇔ min
z∈Bn

c⊤z +
∑
a∈A

ωa
o

∥∥1⊤z − 1
∥∥2 ,

for large enough ωa
o > 0, which leads to a QUBO formu-

lation (1). Setting ωa
o > maxp∈Pa

cp always guarantees
the equivalence. It remains to incorporate the inequality
constraints.

Slack Variables The first approach inserts slack variables
for every inequality constraint, similar to (Davies & Ka-
lidindi). This is often pursued in practice but can lead to
large number of variables, especially when the number of
constraints is large. The linear inequality constraint in (3)
can be reformulated with using an auxiliary vector s ∈ Bn
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(a) Conflicted paths of exam-
plary MAPF problem.

(b) Corresponding discon-
nected conflict graph.

Figure 2: Schematic visualization of a conflict graph, which has
two connected components. This leads to the decomposition into
independent subproblems with reduced problem size.

with binary entries, since Dz ⪯ 1 ⇔ Dz − 1 + s = 0.
This leads to the slightly different but equivalent problem
minz∈Z c⊤z, s.t. Dz − 1+ s = 0. This constrained prob-
lem can then be reformulated to an equivalent unconstrained
problem by introducing a penalty parameter ωs > 0

min
z∈Z,s∈Bm

c⊤z + ωs ∥Dz − 1+ s∥2 . (9)

Using this formulation, however, comes with the overhead
of introducing m additional binary variables. One variable
is needed for every inequality constraint, leading to a total
QUBO dimension of n+m. As we are still in the NISQ era,
it is better to resort to a QUBO formulation that uses fewer
qubits. However, we have a look at the performance of real
quantum hardware for this QUBO formulation in Sec. 5.

Without Slack Variables Since D ∈ Bm×n, we can
avoid using slack variables by using the equivalence

min
z∈Z,s∈Bm

∥Dz − 1+ s∥ ⇔ min
z∈Z

∥∥∥∥Dz − 1

2
1

∥∥∥∥ , (10)

since minn∈N,s∈B(n−1+s)2 = minn∈N(n− 1
2 )

2− 1
4 . Thus,

we do not optimize over any slack variables and reduce the
corresponding QUBO size.

Conflict Graph As a third concept, we have a look into
Conflict Graphs (CG). The vertices of such a graph corre-
spond to all paths considered in the problem and the edges
indicate whether there is at least one conflict between a pair
of paths. An examplary schematic visualization of a conflict
graph is given in Fig. 2. We denote the adjacency matrix of
CG graph as C. The RMP in (3) is equivalent to

min
z∈Z

c⊤z + ωcz
⊤Cz (11)

where ωc ∈ R+ penalizes potential conflicts. Note that it is
square and the dimension is only dependent on the number
of considered paths and not on the number of constraints.

Since the structure of the CG depends on the underlying
problem, it may contain several connected components.
Thus, the graph of the QUBO matrix can have multiple
connected components, dependent on C. These connected
components can be seen as smaller instances, giving us the
ability to solve them independently. This can lead to large
reduction of the considered problem sizes, which is very
vital for current QCs, due to the limited number of available
qubits. Furthermore, a lower density and well-behaved prob-
lem structure can have a huge effect on current quantum
hardware, as we will see in Sec. 5.

This leads to two different hybrid quantum-classical MAPF
algorithms. QUBO-and-Price (QP) describes generating
new paths and stopping when (5) is violated (inner loop
in Fig. 1). Even though the QUBO solver might not be
optimal, this procedure leads to generating all sufficient
paths for obtaining an optimal solution. We denote the
extension of iteratively adding constraints to our problem
as QUBO-and-Cut-and-Price (QCP). It is only guaranteed
to generate an optimal path set if the QUBO is solved to
optimality in every step. However, we also investigate its
suboptimal performance in the next section.

5. Experimental Evaluation
We compare our algorithms QP and QCP with four state-
of-the-art MAPF solvers: BCP (Lam et al., b), EECBS (Li
et al., 2021), LaCAM* (Okumura, 2023a) and LNS2 (Li
et al., b). BCP is an optimal algorithm but has also been
adapted to anytime, while EECBS is suboptimal. LaCAM*
and LNS2 are anytime algorithms, which can quickly obtain
a good feasible solution. For more details on these methods,
we refer to the original papers. The code was taken from
their respective public repositories1234. We kept all standard
parameters and set a maximum time limit of 180 s for all
solvers. The experiments were conducted on a single core
of the type Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.

For QP and QCP we generate the initial paths with Priori-
tized Path Planning (PPP) (Ma et al.). That is, every agent
is planned successively, with removing edges and nodes of
previously planned paths. No clever priorization heuristic
is followed, we randomly sample which agent to be chosen
next. We use a maximum limit of 30 pricing steps in total
and compute optimal Lagrangian parameters λ∗ with LP
in every iteration. We compare the optimal solution of the
RMP obtained by an ILP Brach-and-Bound method with
the solutions obtained by two different QUBO solvers. As
a classical baseline, we use the Simulated Annealing (SA)

1https://github.com/ed-lam/bcp-mapf
2https://github.com/Jiaoyang-Li/EECBS
3https://github.com/Kei18/lacam3
4https://github.com/Jiaoyang-Li/MAPF-LNS2
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Figure 3: Relative performance comparison of our methods QP-ILP, QP-QUBO, QCP-ILP and QCP-QUBO to the baselines PPP, BCP,
EECBS, LNS2 and LaCAM* on four different maps with a varying number of agents. The relative upper bound of the optimality gap
(top) is shown along with the relative total path costs (middle and bottom) averaged over all 25 scenarios. The lower the better, i.e., a
value of 0 corresponds to the best performance, while 1 corresponds to the worst performing algorithm.

implementation of D-Wave (D-Wave Systems Inc., 2025)
and for real quantum hardware, we run experiments on a D-
Wave Advantage system5.4 (D-Wave Systems Inc., 2021)
quantum annealer (QA). Since both solvers are probabilis-
tic, we generate 1000 samples each and use 1000 Monte
Carlo sweeps for SA and an annealing time of 20µs for
QA. The remaining remaining unspecified parameters are
set to their default values. We compare the three differ-
ent QUBO formulations from Sec. 4.3 and denote them by
SLACK (9), HALF (10) and CONFLICT (11). These QUBO
formulations are dependent on penalty parameters, and un-
derstanding their impact is crucial for NISQ devices. Large
penalty weights can increase the dynamic range of QUBO
coefficients (Mücke et al.; Gerlach & Piatkowski, 2024) and
decrease the spectral gap (Stollenwerk et al., a;b), reducing
solution quality and requiring longer annealing times. In our
experiments, we set these penalties to the values described
in Sec. 4.3 for adhering the constraints and leave special
tuning for future work.

As maps and instances, we use the well-known MovingAI
benchmark (Stern et al.). This benchmark includes 33 maps
and 25 random scenarios, some of which were utilized in
our experiments. Every scenario on each map (with some

exceptions) consists of 1000 start-goal position pairs. To
evaluate a solver on a given scenario, we run it on the first
20, 40, 60, 80 and 100 start-goal pairs for all 25 scenarios
and indicate the average performance.

Quantum Hardware Limitations We did not scale up
our experiments further in terms of the number of agents
(e.g. |A| = 1000) because the QUBO size grows rapidly
with the number of paths and constraints, making the prob-
lem increasingly difficult to solve on current NISQ hard-
ware. Even with conflict graph decomposition, the resulting
QUBOs from larger environments often exceed the qubit
capacity and connectivity limitations of existing quantum
hardware.

While the D-Wave Advantage System features an impressive
5, 670 physical qubits5, its limited qubit connectivity poses
significant constraints. To embed arbitrary graphical struc-
tures, D-Wave relies on chaining multiple physical qubits
into logical super-qubits, a process necessitated by the un-
derlying hardware topology. The current Pegasus topology6

5https://www.dwavesys.com/solutions-and-products/systems
6https://www.dwavesys.com/media/jwwj5z3z/14-1026a-

c next-generation-topology-of-dw-quantum-processors.pdf
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Table 1: Total path costs for different maps using 100 agents averaged over 25 scenarios. We show the mean and the standard deviation
and indicate the best performing method in bold an the second best by underlining the result.

Environment LNS2 LaCAM* QP-QUBO QP-ILP

empty-32-32 2164.2± 88.0 2164.2± 87.6 2166.5± 88.9 2163.4± 88.6

random-32-32-10 2239.0± 113.1 2236.8± 112.2 2231.3± 112.2 2225.4± 111.5

room-64-64-8 6301.2± 307.2 6219.2± 285.4 6323.4± 342.4 6107.1± 303.7

maze-32-32-4 4725.4± 334.6 4534.3± 219.8 6332.5± 1272.6 5715.9± 1020.6

den312d 5499.4± 232.6 5492.3± 224.9 4559.0± 195.2 4558.9± 195.2

ost003d 15164.8± 782.8 15164.2± 782.2 15166.2± 783.0 14901.8± 1452.7

den520d 17391.3± 970.8 17391.0± 970.8 17389.5± 973.5 17378.9± 3541.7

supports embeddings of up to 182 densely connected logi-
cal qubits, while the upcoming Zephyr7 topology extends
this to 232. Combined with inherent noise limitations, this
means that only a fraction of the full qubit count can be
effectively utilized, restricting practical problem sizes to a
few hundred logical qubits at most. Since path variables
are added in every iteration of our algorithm, considering
problems with more than 100 agents would thus lead to un-
reasonable results to the aforementioned limitations. As the
quantum hardware matures, more large-scale experiments
will be conducted in future work.

Algorithm Performance In Fig. 3, we depict the per-
formance of our two algorithms QP and QCP for four
different maps of the MovingAI benchmark and varying
the number of agents. All performances are shown rela-
tive to the best and worst performing configuration, i.e.,
vrel

..= (v − vbest)/(vworst − vbest) and averaged over all 25
scenarios. This maps all obtained values to the range [0, 1],
where 0 indicates the best and 1 the worst performance,
respectively. For QC-QUBO and QCP-QUBO we use the
CONFLICT formulation and the SA solver.

The top plot row shows the mean relative upper bound
v̂rel − vrel(LD) on the optimality gap for a different num-
ber of agents. It is not only a measure of solution quality,
but it also quantifies the problem size. The higher this gap
is, the more new paths are added to our problem during
pricing, since it corresponds to the RHS in our optimality
criterion (5). We can see that optimally solving the RMP
(QCP-ILP and QP-ILP) often has a smaller gap than gen-
erating a possibly suboptimal solution by a QUBO solver.
However, the QUBO methods largely improve upon the
base PPP method. Even though QP clearly outperforms
QCP for optimal solving (ILP) of RMP, QCP takes way
less constraints into account and is thus computationally

7https://www.dwavesys.com/media/2uznec4s/14-1056a-
a zephyr topology of d-wave quantum processors.pdf

more efficient. This is also beneficial for the QUBO solvers,
since they can easier generate good solutions for a more
well-behaved problem (less constraints).

The mean relative total path cost for the single MAPF in-
stances are depicted in the middle and bottom plot row. We
compare the baselines PPP, BCP, EECBS, LNS2 and La-
CAM* with QP solving the RMP optimally (QP-ILP) and
with QUBO (QP-QUBO). If a method does not return any
solution in the given time window, we set its performance
to the worst other performing method, allowing for a naive
anytime comparison. It is evident that QP-ILP is always
optimal, while QP-ILP almost always outperforms the best
performing baselines LNS2 and LaCAM*, which are better
for 100 agents on room-64-64-8. The (sub)optimal algo-
rithms BCP and EECBS are always outperformed by our
methods due to their bad anytime performance. It is interest-
ing that for no map they are able to find all optimal solutions
in the given time frame. Since QP-QUBO is able to out-
perform LNS2 and LaCAM* in many cases, our method is
applicable without the need of exactly solving the RMP.

In Table 1, we depict the mean and standard deviation of
the total path costs averaged over 25 scenarios for different
maps using 100 agents. It is evident, that our method with
solving the RMP exactly (QP-ILP) is almost always optimal,
except for maze-32-32-4. We use PPP for initializing the
set of paths which can lead to bad initial results for a large
number of agents—especially for small corridors appearing
in the maze-like maps. Adapting the initialization method
for obtaining a valid set of conflict-free paths (e.g. using
LNS2 or LaCAM* instead) can mitigate this effect. Further,
finding valid solutions to the RMP with our proposed QUBO
formulation (QP-QUBO) is often also outperforming state-
of-the-art heuristics (LNS2 and LaCAM*). However, an
increasing agent count makes it harder to solve the result-
ing high-dimensional QUBO problem, sometimes leading
to unsatisfactory solver performance. With quantum hard-
ware becoming more mature in the future, we expect the
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Figure 4: Performance comparison of different QUBO formulations for four different maps with 20-agent problems along with the optimal
solution, where we run QP (Sec. 5) and QCP (Sec. 5) for 30 pricing steps. We compare SA and QA by indicating the total path cost of the
best sample (top) and the number of infeasible solutions (bottom), i.e. (2c) and (2d) are violated. The cost is scaled by 10−3.

performance of QP-QUBO to approach the one of QP-ILP.

The most time consuming step in our algorithm is to solve
the QUBO problem. However, a wall-clock time compari-
son is difficult for quantum devices nowadays, since there is
a large communication overhead when using real quantum
hardware over cloud services. Nevertheless, assuming per-
fect communication with the QA, we can generate solutions
to a QUBO with an annealing time of around 50µs. Due
to its probabilistic nature, we have to generate only few
thousand samples. In the near future, this could also lead to
very good wall-clock time performance.

QUBO Comparison The effect of using different QUBO
formulations for solving the RMP is depicted in Fig. 4. We
consider four different maps (maze-32-32-4, empty-32-32,
random-32-32-10, room-32-32-4) and compare the results
of QP (Sec. 5) and QCP (Sec. 5) for 20 agents. This leads
to varying QUBO sizes between 20 and 400, depending on
the underlying map and scenario. We use SA and QA for
solving HALF and CONFLICT for QP and HALF and SLACK
for QCP.

In the top row, we show the cost of the best sample obtained
by SA and QA over all 25 scenarios, along with the op-
timal solution (ILP). Only feasible samples are indicated
here, that is only those who adhere the constraints. For QP,
we can see that finding a feasible solution with the HALF
QUBO is nearly almost optimal while the solution quality
of CONFLICT slightly deteriorates. Comparing HALF and
SLACK for QCP, we find that both solvers are able to find op-
timal solutions. However, QA has problems finding feasible
solutions for the first map for all QUBO formulations.

The number of infeasible solutions returned by SA and QA

is depicted in the bottom row. While SA always finds feasi-
ble solutions for HALF, it is easier for QA to obtain feasibil-
ity with CONFLICT. This is due to the sparsity advantage
of CONFLICT over HALF and the corresponding decompo-
sition into independent subproblems. Since the hardware
topology of current quantum computers is strongly limited,
such properties have a large effect on the solution quality
obtained. For QCP, we find that QA finds slightly more
feasible solutions with HALF than SLACK. However, we
note that only a few separation steps happened and thus only
a small number of constraints have been generated. Using
more pricing steps or scaling up the problem size would
lead to way more included constraints, making the SLACK
QUBO infeasible to solve.

6. Conclusion
In this paper, we presented two novel optimal hybrid
quantum-classical MAPF algorithms. Extending the classi-
cal approach of Branch-and-Price-and-Cut, we circumvent
exponentially many branching steps. Paths and constraints
are iteratively added to our problem which is then solved
by utilizing different QUBO formulations, making our algo-
rithms suited for quantum computing. On an ideal adiabatic
quantum processor, the QUBO subproblems are solved to
global optimality. We proof a generalization of the clas-
sically known criterion telling us that our currently avail-
able path set is optimal. Experiments indicate good perfor-
mance of our algorithm compared to state-of-the-art MAPF
algorithms. Evaluating different QUBO formulations in-
dicates the superiority of our approaches over previously
presented methods. With these insights, we conclude that
the hardware-aware design of the QUBO problems can al-
ready lead to an advantage on near-term quantum devices.
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