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Abstract

Automatic medical coding has the potential
to ease documentation and billing processes.
For this task, transparency plays an important
role for medical coders and regulatory bod-
ies, which can be achieved using explainabil-
ity methods. However, the evaluation of these
approaches has been mostly limited to short
text and binary settings due to a scarcity of an-
notated data. Recent efforts by Cheng et al.
(2023) have introduced the MDACE dataset,
which provides a valuable resource contain-
ing code evidence in clinical records. In this
work, we conduct an in-depth analysis of the
MDACE dataset and perform plausibility eval-
uation of current explainable medical coding
systems from an applied perspective. With this,
we contribute to a deeper understanding of au-
tomatic medical coding and evidence extrac-
tion. Our findings reveal that ground truth evi-
dence aligns with code descriptions to a certain
degree. An investigation into state-of-the-art
approaches shows a high overlap with ground
truth evidence. We propose match measures
and highlight success and failure cases. Based
on our findings, we provide recommendations
for developing and evaluating explainable med-
ical coding systems.

1 Introduction

Explaining model predictions is a key component
in automatic medical coding systems. Healthcare
systems worldwide employ coding systems to doc-
ument diagnoses and procedures, and to process
medical bills. Codes are often structured in hierar-
chies which contain up to hundreds of thousands of
terms to cover the complexity of medical care and
the multitude of synonymous medical expressions.
Medical codes are used for administrative purposes
(Klug et al., 2024), for prediction of length of
stay and mortality (Harerimana et al., 2021), ad-
verse event detection, and clinical decision support
(Antweiler et al., 2023). The International Classi-

The patient was admitted with severe
hypertension I10 . Beta-blockers and ACE

inhibitors were administered. The patient reported
a history of smoking F17 and high cholesterol
levels.

Figure 1: Discharge summary with ICD codes and re-
spective evidence highlighted.

fication of Diseases (ICD)1 is the most prominent
system in hospital settings. A patient’s set of ICD
codes together with the main diagnosis dictates the
level of reimbursement. Assigning appropriate ICD
codes manually requires extensive expertise and is
guided by detailed, country-specific rule books.

To reduce manual efforts and increase efficiency,
automatic coding methods have been developed.
With the adoption of deep learning, especially the
transformer architecture (Vaswani et al., 2017; De-
vlin et al., 2019), automatic coding systems have
achieved practical usage (Biswas et al., 2021; Edin
et al., 2024). State-of-the-art approaches treat code
prediction as a multi-label classification task and
rely on pre-trained language models (Ji et al., 2024).
However, these models with billions of parameters
lack transparency – which diminishes acceptance
by coding staff and presents a barrier during regu-
latory assessments by external authorities.

The goal is to develop medical coding systems
which are able to provide text evidence for a pre-
dicted code. This objective can be achieved with
the use of explainability methods. In particular,
feature attribution methods identify which input
features are decisive for the model output (Kim
et al., 2022; Atanasova et al., 2020; Ribeiro et al.,
2016; Lundberg and Lee, 2017) assigning scores
to each token of a medical document. However, ex-
plainability research has been mostly constrained to
short text and binary classification on social media

1https://www.who.int/standards/
classifications/classification-of-diseases

https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases


data or product reviews (Wiegreffe and Marasović,
2021; Guzman et al., 2024). In the medical domain,
the scarcity of data and the need for domain ex-
pertise make word level annotations challenging.
Cheng et al. (2023) carried out a re-annotation ef-
fort of a MIMIC-III subset (Johnson et al., 2016)
and created annotation spans as evidence for each
medical code. This dataset is the first to include
textual evidence for assigned medical codes and
offers new research opportunities in information
extraction and explainability.

Building on this, recent work investigated dif-
ferent training strategies and evidence extraction
methods showing promising results using gradient-
based explanations (Edin et al., 2024).2 The evalua-
tion focused on two key properties of explanations,
faithfulness and plausibility (Jacovi and Goldberg,
2020; Nauta et al., 2023). However, prior work was
technique-centric, lacking depth in data analysis
and application-focused evaluation.

Hence, what is still missing is an investigation
from a practical perspective on (a) how to utilize
the dataset for research purposes and (b) how well
current explainability approaches, incl. evaluation,
work for clinical adoption.

This work aims to deepen the understanding of
ICD coding, and improve evidence extraction and
evaluation.3 The focus is on data understanding
and plausibility evaluation. Our contributions can
be summarized as follows:

1. We carry out an in-depth analysis of the
MDACE dataset and provide insights for
dataset utilization.

2. We perform experiments with state-of-the-art
explainable medical coding systems, intro-
duce match measures and provide a practical
perspective on results.

3. Based on our findings, we give actionable
recommendations for evidence extraction and
evaluation in ICD coding.

2 Dataset Overview

MDACE is a medical dataset in the English
language containing Electronic Health Records
(EHRs) along with associated ICD codes (Cheng
et al., 2023). The EHRs included in MDACE are

2Throughout the paper, evidence and explanation are used
interchangeably.

3Our code is available at https://github.com/
lamarr-xai-group/anatomy-of-evidence
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Figure 2: Average number of evidence spans for each
document type for Profee and Inpatient

a subset of the larger MIMIC-III dataset (Johnson
et al., 2016; Goldberger et al., 2000) containing
302 admissions.4 They have been recoded from
ICD-9 to ICD-10 and extended by text spans as ev-
idence for these respective codes. This process was
carried out by two teams of professional medical
coders. One team (Inpatient) coded all documents
and annotated in a sufficient manner, i.e., as much
evidence as necessary to justify the respective code,
while the other team (Profee) coded a subset in a
complete manner, i.e. all evidence contained within
the documents.

Amount and length Across all admissions, doc-
uments and codes, the dataset contains 9,499 evi-
dence spans, 5,563 in Profee and 3,936 in Inpatient.
The average labels per document is 11.3 for Inpa-
tient and 31.4 for Profee. Hence, there is roughly
three times more evidence in the complete labeling
scheme. Figure 2 shows the average number of evi-
dence per document type for Inpatient and Profee.
Evidence length for Inpatient and Profee is roughly
the same, 2.18 and 1.96 tokens.

3 Analysis of Human-Annotated Evidence

To determine the characteristics of medical code
evidence, we perform an in-depth analysis of the
MDACE dataset. Compared to other data resources,
the documents in MDACE are relatively long with
an average of around 2,000 words (Dai et al., 2022).
Given the considerable length, we explore whether
focusing on relevant segments could be a driver for

4Use of the data and trained models is restricted to scien-
tific research.

https://github.com/lamarr-xai-group/anatomy-of-evidence
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Figure 3: Distribution of human-annotated evidence
positions based on a common subset annotated by both
Inpatient and Profee coders. The four subfigures depict
the distributions for discharge summaries and physician
notes for Inpatient and Profee annotations. The x axis
refers to relative evidence positions and the y axis shows
normalized evidence counts.

computational efficiency. To the same effect, we
seek efficient methods to detect relevant labels. We
analyze to what extent evidence and medical codes
can already be captured with existing knowledge,
i.e., code descriptions. Prior work did not discuss
the relation of the common documents in Inpatient
and Profee which we address in this work. In a
qualitative analysis, we shed light on annotation de-
pendencies and annotation diversity. These points
give rise to the following research questions:

• RQ1 Where in the document is ground truth
evidence located?

• RQ2 Does ground truth evidence overlap with
code descriptions?

• RQ3 Is sufficient evidence a subset of complete
evidence?

3.1 RQ1: Where in the document is ground
truth evidence located?

For the position analysis, we examine whether fo-
cusing on specific text segments, e.g., beginning of
a document, is beneficial for solving the classifica-
tion and evidence extraction tasks.

We concentrate on the two most frequent and
commonly used document types: Discharge sum-
maries and physician notes. The underlying data
basis is the common subset of documents anno-
tated by both, Profee and Inpatient coders. Fig-
ure 3 shows the distribution of evidence position
throughout the discharge summaries and physician
notes for Inpatient and Profee. Evidence counts are
normalized per plot and a relative position of 0.5
means that evidence appears halfway through the
document. For Inpatient, evidence occurs mostly
at the beginning and end of documents. In compar-
ison, the relevant information in physician notes
seems to occur more towards the end of documents.
For Profee, a valley is only perceivable for the
physician notes, there seems to be no such pattern
in the discharge summaries.

Does sufficient evidence occur earlier in the doc-
ument? Since text is typically scanned from top
to bottom, we assumed that sufficient evidence
is annotated when it first occurs in the document.
That leads to the hypothesis that sufficient evidence
occurs more in the beginning of documents in com-
parison to complete evidence. The position infor-
mation shows that this is not the case: The evi-
dence counts in Inpatient are not higher for lower
positions. Contrary to our assumption, sufficient
evidence is not located more in the beginning of
the documents.

3.2 RQ2: Does ground truth evidence overlap
with code descriptions?

The aim behind this question was to derive insight
from human-annotated evidence to inform develop-
ment of efficient methods for the ICD coding task.
If we can find evidence and identify ICD codes with
existing knowledge, computing resources may be
reduced. As knowledge base, we use code descrip-
tions – human-readable titles for the alphanumeric
ICD codes available in the ICD system. For ex-
ample, the code description for 427.31 is ‘Atrial
fibrillation’. We investigate to what extent code de-
scriptions overlap with human-annotated evidence,
in turn, giving an indication of whether certain
codes can be detected with code descriptions.

For this analysis, the ICD-10-CM system and
code descriptions of the MDACE dataset were used.
The evidence spans and code descriptions were lem-
matized; stop words and punctuation were removed.
For example, the code description of R06.83 ‘snor-
ing’ is lemmatized to ‘snore’. For each code the
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Figure 4: Distribution of ICD codes according to evi-
dence overlap with code descriptions. The x axis shows
the median value of relative overlap scores, the y axis
refers to the code counts.

intersection of evidence-description pairs is calcu-
lated and divided by the set of words in the de-
scription. The median for all spans of that code is
used to display the overlap. Figure 4 shows that
there are roughly three overlap categories: nearly
no overlap, overlap to some extent and strong over-
lap. Most codes fall into the no or nearly no overlap
category as the overlap is close to zero. However,
a number of codes have a strong overlap with the
code description. For example, two codes with
high overlap are R06.83 (snoring) and also I31.3
(pericardial effusion). Codes with high overlap of
evidence and code descriptions present research po-
tential for solving part of evidence extraction with
efficient methods such as rule-based systems.

3.3 RQ3: Is sufficient evidence a subset of
complete evidence?

One unique feature of the MDACE dataset is the
annotation in both, a sufficient (Inpatient) and com-
plete manner (Profee). The goal was to establish
the relationship between Inpatient and Profee anno-
tations. With the hypothesis that sufficient evidence
is a subset of the complete documents, we selected
the 52 document with common hospital admission
ID, compared the codes and calculated a strict sub-
set. From the note IDs it became clear that the
common subset is smaller than anticipated with
470 unique note IDs and only 118 common note
IDs. Of these 118 common note IDs 1602 codes
are unique and 331 are identical. From these 331,
55 are a subset. Cheng et al. (2023) state that ICD
codes do not necessarily align due to different cod-
ing rules. However, the alignment is still smaller
than anticipated.

Table 1: Two ICD codes with information on corre-
sponding evidence: number of occurrences in the whole
data set / unique counts, and evidence examples

Code all/unique Evidence examples

I10 133/8 ‘hypertension’, ‘HTN’, ‘hyper-
tensive‘

Z87.891 20/19 ‘smoking history’, ‘former
smoker’, ‘the distant past’

3.4 Qualitative Analysis

Evidence diversity per code We examined the
linguistic diversity of evidence within codes. For
each code, the corresponding evidence spans were
compiled across all document types. For the ma-
jority of codes, the evidence appears similar, e.g.,
as for ICD code I10 (Essential (primary) hyperten-
sion) shown in Table 1. Evidence for this code
occurs frequently in the data, whereas the number
of unique strings is small. In contrast, evidence
for code Z87.891 (Personal history of nicotine de-
pendence) is more diverse; the unique count nearly
equals the number of occurrences. This finding
suggests that some codes have distinct evidence
while others present with higher variance which
may make them more difficult to learn.

Dependencies between evidence spans When
performing sanity checks, we found evidence spans
that would not justify a code per se. Taking the
example of Z81.891 with paraphrased context:

‘Smoked one PPD for seven years in the distant
past’ with ‘in the distant past’ as evidence. Here,
‘in the distant past’ is not sufficiently capturing both
the notion of past and smoking. We hypothesize
that this may be due to two factors: (1) A link is
missing, that is, the reference or relation to another
annotation for the same code is missing and (2)
underspecification, i.e., information is not anno-
tated explicitly enough, which can be the result
of missing information due to anonymization or
annotation oversight.

4 Analysis of Model Explanations

For the modeling approaches, we investigate to
what extent current approaches for explainable ICD
coding are able to extract plausible evidence that
matches with the ground truth. In a qualitative
analysis, we highlight success and failure cases.
We were interested in finding out whether model
correctness relates with explanation characteristics,
in particular explanation length. Taken together,



we consider the following research questions for
the analysis of model evidence:

• RQ4 How does the length of explanations re-
late to classification performance?

• RQ5 How well do model explanations match
with ground truth explanations?

• RQ6 To what extent do different model ap-
proaches match w.r.t. evidence?

4.1 Experimental Setup

Data split The data consists of discharge sum-
maries from the Inpatient charts (sufficient). Fol-
lowing prior work, the ICD-9 system is used. The
split for training, validation and test is 181/60/61
(Cheng et al., 2023). The 61 documents in the
test set contain 586 evidence spans. Notably, the
evaluation includes true positives and false nega-
tives, i.e., ICD codes that were not predicted are
nevertheless part of the explanation evaluation.

Models The analysis is performed on state-of-
the-art fine-tuned models available from Edin et al.
(2024). There are five model types – each under-
went a different training strategy. The first type
relies on a supervised approach which uses anno-
tated evidence in the training objective minimiz-
ing the Kullback-Leibler divergence between the
cross-attention weights and the explanation spans
(Huang et al., 2022; Edin et al., 2024). The second
type is an unsupervised baseline, i.e., no evidence
annotations were used during training. The other
three types are also unsupervised but employ ro-
bustness strategies to reduce relative importance of
irrelevant tokens. The strategies are input gradient
regularization, projected gradient descent and to-
ken masking as detailed in (Edin et al., 2024). For
each type, 10 trained models are available based on
different seeds resulting in 50 model weights.

For RQ4, all 50 models are utilized to investi-
gate how evidence length relates to classification
performance overall. For RQ5 and RQ6, we focus
on one supervised and one unsupervised model to
dive deeper into evidence extraction from a prac-
titioner’s perspective. A typical applied setting is
assumed where the best performing models are se-
lected for integration and deployment. The two
model seeds are selected according to explana-
tion metrics. The best-performing unsupervised
models is a model with input gradient regulariza-

tion (IGR).5 This approach regularizes with the L2
norm of the gradient of the loss w.r.t. the input
token embedding.

The models are based on a modified version of
the PLM-ICD architecture (Huang et al., 2022);
the label-wise attention has been replaced by stan-
dard cross-attention to improve stability (Edin et al.,
2024). The underlying model is a RoBERTa archi-
tecture (Liu et al., 2019) pre-trained on PubMed
text and physician notes (Lewis et al., 2020). Fine-
tuning was performed on MIMIC-III discharge
summaries, utilizing MDACE evidence spans for
the supervised strategy.

Explanation Method For the generation of ev-
idence, we used the feature attribution method
AttInGrad which achieved the best performance
according to faithfulness and plausibility metrics
when compared to other gradient- and perturbation-
based methods in prior work (Edin et al., 2024).
AttInGrad is a combination of Attention and
Input×Grad, where the attention weights are multi-
plied by the feature attribution scores attained by
applying the L2 norm to the Input×Grad feature at-
tributions. For Input×Grad, the input as well as the
gradients are multiplied element wise. A decision
threshold for the attribution scores is calculated and
set based on the validation set.

Match measures Previous work evaluated plau-
sibility of explanations with the F1 score or
Intersection-Over-Union (DeYoung et al., 2020).
These metrics are suitable for benchmarking, how-
ever, they are less meaningful for answering how
close model explanations are to the ground truth.
The underlying assumption is that it is often enough
to guide the attention of the coder to a context win-
dow. We therefore introduce measures which are
more comprehensible for an end user and which
capture this notion of proximity. For the compari-
son of ground truth evidence and model evidence
we use the following measures:

Empty: No evidence is predicted because the
attribution scores are below the threshold for
inclusion.

Exact match: The set of ground truth evidence is
equal to the set of model evidence.

Proximate match: All ground truth sequences
have at least one token match in the set of

5Seed numbers for best-performing models - unsupervised
(IGR): igr/1p0vue7o and supervised: supervised/r5u1sr8h
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Figure 5: Recall with standard deviations of ICD codes
in relation to evidence word count. Comparison of
explanations from all models with ground truth (GT)
explanations. Bins correspond to evidence word count.

machine explanations and tokens that have no
match are in a context window of k.6

Partial match: At least one ground truth se-
quence does not have a match or at least one
machine explanation token is outside the con-
text window.

No match: There is no overlap in token IDs.

4.2 RQ4: How does the length of explanations
relate to classification performance?

Prior work found that models are better at extract-
ing evidence with low word count (Cheng et al.,
2023). While this is a characteristic for evidence
extraction abilities, is short model evidence also
an indicator for ICD classification performance?
We explore how evidence length, measured by the
number of words, relates to recall. In Figure 5, the
relation of evidence length and ICD code recall
is depicted for all 50 model seeds. In this plot,
the blue bars display the recall of all models when
grouped over word count of the human-annotated
evidence (in quantile bins). While only minor vari-
ations are observed here, strong impact on recall is
observed for model evidence word count (in quan-
tile bins) shown in orange bars. In these cases,
when fewer words are extracted as evidence, the
models are more likely to be wrong than when
more words are predicted as evidence.
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vised model regarding evidence match on the test set
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match and no match. Lower empty, lower no match and
higher exact match is desired.

4.3 RQ5: How well do model explanations
match with ground truth explanations?

The heart of evaluating plausibility lies in how good
medical coding systems are in providing evidence.
We investigate to which extent the extracted ICD ev-
idence from models aligns with human-annotated
evidence to determine similarities, differences, and
potential for automation. Figure 6 shows match
counts for the supervised and the unsupervised
model on the test cases.

Overlap of human-annotated and model evi-
dence is high. In roughly 80% of test cases, the
best model (supervised) identified at least one cor-
rect token (exact, proximate and partial match).
The number of exact matches are low in compari-
son to the overlap counts. The cases for which no
explanation is provided, due to scores being below
explanation threshold, is minimal.

No id match can still be a semantically mean-
ingful match In an effort to understand whether
the no match category contains semantically mean-
ingful evidence, all evidence in that category was
manually annotated by two authors with basic med-
ical knowledge. A binary label was assigned to
signify the semantic match of the respective strings.
The context was not considered, only the evidence
strings. A strict approach was taken, only assign-
ing a positive label when each token in the ground
truth has an equivalent string-match or close match
such as ‘obesity’ and ‘obese’. We find that roughly
half of the non-matches align with the ground truth
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Figure 7: Alignment of match types between supervised
and unsupervised model based on the five match types
using counts.

evidence (46% for supervised and 53% for unsu-
pervised). For a more precise analysis, expert ass-
esments are necessary.

4.4 RQ6: To what extent do the model
approaches agree w.r.t. evidence?

When evaluating explanations, the Rashomon ef-
fect has to be taken into account. This effect im-
plies that models can have equal performance but
different underlying strategies (Müller et al., 2023).
Therefore, we compare the evidence from differ-
ent models, unsupervised and supervised, to gain
insight into explanation agreement.

Agreement, in terms of evidence, is assessed
based on the match types (see Figure 7). In 74% of
cases the models have the same match type (diag-
onal values). For exact matches, they agree on 49
cases. The supervised model has fewer empty evi-
dence predictions and fewer non-matches, which is
desired. The number of exact matches and partial
matches are higher, while proximate matches are
lower. Cases assigned an exact match by the su-
pervised model but not by the unsupervised model
received a proximate or partial match, with only
two cases as non-matches.

Probabilities Considering code predictions, all
codes that have at least an output probability of
0.5 are treated as predicted. Taking a closer look
at the performance on a code-level: For the super-
vised model, 374 of 586 cases are true positives
(TP) and the rest are false negatives (FN), while
the unsupervised model has 379 out of 586 TP. The

Table 2: Average probabilities of code predictions for
supervised and unsupervised model sorted by match
types, standard deviation in parentheses

Type Average probability
supervised unsupervised

empty 0.002 (±0.006) 0.102 (±0.226)
exact 0.607 (±0.300) 0.637 (±0.296)
prox 0.496 (±0.349) 0.561 (±0.325)
partial 0.688 (±0.310) 0.707 (±0.303)
no match 0.471 (±0.373) 0.467 (±0.386)

number of TP is similar for both models and the
number of FN is relatively high, but within expecta-
tion given the large label space. In addition, Table 2
reports the average probability and standard devi-
ations for each match count and model type. The
probabilities for empty evidence predictions are
low for both models, especially for the supervised
approach. For inference, empty evidence is there-
fore rare and negligible. Exact matches are not tied
to higher probability values.

4.5 Qualitative Analysis

Do exact matches have a pattern? The observa-
tion across supervised and unsupervised is that ex-
act matches are often well-defined words: Anemia,
GERD, Alzheimer’s disease, osteoarthritis, hyper-
tension, etc. However, the presence of these words
is not a sufficient condition for an exact match,
i.e., just the occurrence of ‘hypertension’ does not
automatically lead to an exact match.

Abbreviations and uppercasing We initially an-
ticipated that the models would struggle with ab-
breviations. This did not prove to be the case as
there are many success cases in the test data, e.g.,
‘GERD’ and ‘Gastroesophageal reflux’ are both
extracted correctly. However, uppercasing seems
to present a challenge. For example, ‘HYPER-
BILIRUBINEMIA’ gets tokenized into: HYP, ER,
BI, LI, R, UB, IN, EM, IA. The two models did not
identify the relevant tokens. If it is known that up-
percasing occurs frequently, a preprocessing step
may be beneficial. Furthermore, the model evi-
dence contains punctuation to a small degree, but
the occurrence rate is relatively low. One option
is to remove punctuation before tokenization, al-
though this cleaning step is not advisable because
information may get lost, e.g., for ‘C. difficile’.



Duplicates Models tend to extract more evidence
than humans annotated, often echoing the same
or similar information at different positions. For
example ‘hypertension’ in four different locations
in the text. If duplicates are undesired, a post-
processing step could cushion the effect.

Confused or correct? We found unexpected cor-
relations in the model evidence. In certain cases,
the models did not only extract a condition but also
a drug as evidence, e.g., ‘hypertension’ and ‘ACE’
or ‘shingles’ and ‘acyclovir’. This leads to the
question whether drugs count as evidence. On the
one hand, this can be seen as an undesired spurious
correlation because the drug may not be a sufficient
condition for a diagnosis, considering that drugs
can be repurposed. If the drug was taken before the
hospital stay, it is an indicator of a disease, but it
should not be the main explanation. If the medica-
tion was administered after the diagnosis, it has no
explanatory power.

Similarly, there are signs of co-morbidities. For
example, ICD code 311 (depressive disorder) re-
ceived ‘depression’ as well as ‘anxiety’ as evidence.
Taken together, these correlations again demon-
strate how feature attribution does not produce
causal relations.

5 Discussion

The analysis of code descriptions together with the
qualitative analysis of codes with low diversity and
high exact match count suggests that parts of the
ICD coding task can be performed in a simple and
efficient manner, for example with rule-based sys-
tems. This opens up research potential for hybrid
approaches.

We have shown that match counts that take prox-
imity into account are able to capture nuances of
extracted evidence that would otherwise be missed
with other metrics.

The findings, that models are more likely to be
wrong when fewer words are extracted and that du-
plicates are frequent, are counterintuitive (Occam’s
razor). As we would have expected more variance
across models, further research is needed to inves-
tigate the precise role of robustness strategies on
feature sparsity and associated model performance.

Considering the probabilities, there was no pat-
tern that exact matches have higher output proba-
bilities. A promising avenue may be to investigate
which effect model calibration has on match types.

5.1 Recommendations
For practitioners Our findings demonstrate that
the supervised approach has more exact matches,
fewer empty, and fewer non-matches. If the imple-
mentation of a system requires high exact matches,
our experiments show that current supervised meth-
ods are recommended. Investing in evidence an-
notation has a positive effect on addressing the
requirement. For cases where exact matches have
lower priority, the investment may not be neces-
sary. While the unsupervised training strategy with
input gradient regularization proved similarly suc-
cessful as the supervised approach, the annotated
evidence was still used to compute a feature attribu-
tion threshold (Edin et al., 2024). This is important
when aligning human preferences about evidence
with the evidence extracted from a model. To tackle
duplicates and uppercasing, pre- and postprocess-
ing steps can be helpful. Since explanations are on
a token level, e.g., ‘pirin’ as in ‘aspirin’, they may
be incomprehensible in isolation. For evidence
presentation, it can be helpful to highlight entire
words.

For researchers Because of the common doc-
uments, it is not recommended to simply use In-
patient and Profee in a train-test scenario together
because it can lead to data leakage.

Furthermore, it is important to report and (if pos-
sible) evaluate false positives. Prior work used true
positives and false negatives to evaluate explana-
tions, that is, including codes not predicted by the
model. False positives cannot be readily evaluated
because of missing ground truth. Including false
negatives is useful for benchmarking and finding
suitable explanation methods. However, in a down-
stream task, only predicted codes matter, whether
correct or not. At a minimum, the number of false
positives, which are not considered for the plausi-
bility analysis, need to be reported.

6 Related Work

ICD Coding The task of assigning medical codes
given clinical notes is typically modeled as a multi-
label classification problem. For automated ICD
coding, two main approaches have emerged: (i)
contextual approaches, often relying on CNNs or
LSTMs, and (ii) pre-trained language models. The
state-of-the-art for contextual approaches is CoRe-
lation (Luo et al., 2024) which integrates a graph-
based component. The predominant model archi-
tecture using pre-trained language models is PLM-



ICD (Huang et al., 2022) which shows similar per-
formance to CoRelation. Regarding the evaluation
procedure, Edin et al. (2023) recently identified
flaws in several works, e.g. inadequate train-test
splits. The approaches are all comparable in per-
formance, struggling with rare codes. Recent work
has employed LLMs to perform ICD coding (Yang
et al., 2023) but the performance is lagging behind
the other approaches (Soroush et al., 2024).

Explainability and evidence extraction in ICD
coding This research direction addresses the
question of why a code is applicable to a clinical
text. Here, the focus is on feature attribution meth-
ods which assign scores to the input features for
each class. Several studies have utilized attention or
explainability methods and applied them to medical
coding problems (Mullenbach et al., 2018; Ivankay
et al., 2023; Hou et al., 2024; Edin et al., 2024). Un-
til recently, there were few to no datasets with word-
level evidence which led to evaluation concentrat-
ing on faithfulness (Wood-Doughty et al., 2022) or
unsustainable plausibility evaluation: experts rat-
ing informativeness (Mullenbach et al., 2018; Kim
et al., 2022), approximating expert ratings (Wood-
Doughty et al., 2022) or anecdotal examples (Liu
et al., 2022). With the MDACE dataset, plausibility
can now be more readily evaluated using annotated
evidence spans (Cheng et al., 2023) and this study
focuses on plausibility evaluation. Perturbation-
based methods, in particular LIME (Ribeiro et al.,
2016) and KernelSHAP (Lundberg and Lee, 2017),
are not suitable for ICD coding due to high resource
consumption. Instead, gradient-based methods are
prevailing (Edin et al., 2024).

7 Conclusion

In this work, we studied the task of explainable ICD
coding based on medical records. We investigated
the MDACE dataset which contains medical codes
with corresponding evidence spans. Our analysis
revealed a certain overlap of evidence with code
descriptions. We examined the performance of cur-
rent approaches, comparing unsupervised and su-
pervised methods, and found that overlap with the
ground truth is relatively high. The supervised ap-
proach is better in extracting exact matches. Based
on our findings, we proposed recommendations for
extracting and evaluating evidence for ICD coding
including the intended use of evidence and report-
ing of false positives. Going forward, there are sev-
eral open research avenues in improving evaluation

of semantic similarity, investigating the relation of
expanation characteristics and performance, and a
formalization of sufficient and complete evidence.

Limitations

One limitation is the amount of data available,
which makes detailed error analyses challenging.
Additionally, as pointed out in prior work, the data
basis are discharge summaries, which may not fully
represent real-world settings. We have decided on
certain evaluation settings, such as a fixed context
window where the value depends on the intended
use of the explanations. We assume that explana-
tions help guide attention to relevant information
in the text for decision-making, but this may vary
for other applications. Hence, our findings may not
automatically generalize to other tasks or domains
and should be specifically evaluated. Furthermore,
we selected existing models based on explanation
performance, but since explanation performance is
inherently a secondary objective, in practice, mod-
els will likely be chosen based on classification
performance. While we provide considerations for
evaluating semantically meaningful evidence, this
remains a challenge. Our work inherits the limi-
tations present in the MDACE and the underlying
MIMIC data, such as annotation inconsistencies.

Ethical Considerations

With the adoption of automated medical coding sys-
tems in applied settings there is a risk of overlook-
ing errors which is why detailed analyses of model
output is important. Medical coding systems offer
to increase efficiency and reduce cost. Hereby it is
not the goal to replace workers, but to assist coders
in a collaborative human-AI effort to solve the task
of ICD coding. Explanations should support de-
cision making. However, explanations can lead
to undesired effects, such as over-interpretation,
over-trust or algorithm aversion. It is important
to focus on evaluation of explanations to ensure
that they are comprehensible and relevant before
blindly integrating them in an application.
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documents X , the objective is to learn a function f
that maps each document xi ∈ X to a probability
vector ŷ ∈ [0, 1]N , where N is the set of codes.
Given a clinical text with a token sequence, the
classification objective is to determine the output
probabilities of the set of codes. The secondary
objective is evidence extraction, here, approached
with feature attribution methods. An attribution
function assigns a score to each token that reflects
the token’s influence on the model’s prediction.

B Data Details

The MDACE data is built using a subset of MIMIC-
III data (Johnson et al., 2016). The data includes
hospital records of patients that holds information
on demographic data, diagnoses and procedures.
Each hospital admission has several associated doc-
uments which were all coded using ICD systems.
The ICD codes are especially useful for billing
purposes. While the MIMIC-III dataset contains
labels on a document-level, MDACE additionally
provides evidence for each of these labeled codes
on a textual level. The data is provided in a json for-
mat. Each note contains an ID, document category,
and a list of annotations. An annotation contains
the ICD code, the code description, and, most im-
portantly, begin and end position which refer to
character position in the note text string. There can
be several annotations in a text with the same ICD
code, as in the case of Profee annotations.

C Implementation Details

C.1 Seed selection
Several research questions focused on two ap-
proaches, supervised training and input gradient
regularization (IGR) for which one seed was se-
lected respectively. The performance of evidence
extraction for all seeds of these approaches is de-
picted in Figure 8.

C.2 Overlap between evidence and code
descriptions

The lemmatization, stop word and punctuation re-
moval is performed with spaCy (Honnibal et al.,
2020). Numbers are not removed. With the clean-
ing process ‘Shigellosis due to Shigella flexneri’
is reduced to ‘Shigellosis Shigella flexneri’, while
for ‘Amebiasis, unspecified’ only the comma is re-
moved. The stopword removal also include words
such as ‘without’ and ‘except’ where the removal
may be undesired.
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Figure 8: F1 scores, precision and recall in regards to
explanations for all seeds of supervised and IGR (Edin
et al., 2024). Top: IGR, bottom: supervised
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