Anytime YOLO Early exits for interruptable object detection

Authors: Daniel Kuhse, Harun Teper, Sebastian Buschjäger, Chien-Yao Wang, Jian-Jia Chen

Anytime Object Detection

- Interruptable inference that still leads to results
- Interrupt time **unknown** in advance (budgeted vs anytime)
- Use **early exits** to provide results from intermediate layers

Anytime Quality

- No previous definition of anytime quality
- Suggestion: normalized, weighted area of performance plot

$$Q = \mathbb{E}_{x,y \sim \mathcal{D}} \left[\frac{1}{T(x)} \int_0^{T(x)} q(f(t,x),y) w(t) dt \right]$$

Challenges

- GPUs currently **uninterruptable** (chunked execution)
- Better target MCUs?
- Soft anytime compute final result after interrupt (delay)
- Hard anytime return immediately (redundant results)
- YOLO has **high exit cost** combined with **post-processing**
- Future: NMS-less? Cheaper heads? Stitching together models?
- For which applications is overhead worth it?

Early Exit Architecture enabling Anytime

- YOLO architecture pyramidal 3 **subexits** per exit
- Subexits operate at different resolutions
- Subexits can be mixed

- Pyramidal architecture has strict order
- Idea: transpose it!
- Earlier exit with 3 resolutions, can optimize order

Performance

