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Astronomical Radio Signals
Minimalistic Models for Pulsar 
and FRB Detection

Applicability of Synthetic Data

In this work, astronomical radio signals are understood 
as signals from two types of cosmic sources of pulsed 
radio emission: pulsars and fast radio bursts (FRBs).

Pulsars are rapidly rotating neutron stars with extremely 
strong magnetic fields. The unique conditions in their 
magnetospheres (Philippov & Kramer, 2022), as well as in 
their interiors (Lattimer & Prakash, 2001), make them key 
objects for fundamental physics. In addition, pulsars 
have broad astronomical importance: they are used in 
the search for gravitational waves (EPTA Collaboration, 
2024), in the study of the interstellar medium (Woods, 
2024), and in tests of general relativity (Freire & Wex, 
2024).

Fast radio bursts, in contrast to pulsars, are not stable 
sources of emission but rather a phenomenon 
manifesting as extremely powerful extragalactic radio 
pulses of very short duration. Their nature remains not 
fully understood to this day (Petroff et al., 2022).

The main characteristic of astronomical 
radio signals

One of the key properties of astronomical radio signals is 
the dispersion measure (DM). It is defined as the 
integrated column density of free electrons along the 
line of sight and is a fundamental quantity that confirms 
the cosmic origin of the emission. The dispersion 
measure causes a frequency-dependent delay of the 
signal, expressed as

∆𝑡 = 4.15 𝑚𝑠 × 𝑓𝑙
−2 𝐺𝐻𝑧 − 𝑓ℎ

−2 𝐺𝐻𝑧 × 𝐷𝑀 𝑐𝑚−3𝑝𝑐 ,

where ∆t – the time delay between fl and fh, fl – the low 
frequency, fh – the high frequency, DM – the dispersion 
measure.  

In practice, registered pulses from pulsars or fast radio 
bursts are usually very weak and often hidden in the 
noise. To increase signal to noise ratio (SNR), a process 
known as dedispersion (Hankins & Rickett, 1975) is 
applied: the frequency-dependent delays are 
compensated according to the dispersion measure, 
which improves the signal fidelity.

For signals in which we do not know the DM a priori e.g., 
in the case of new FRBs, an effective way to detect the 
signal is to compute several DM dedispersion trials, the 
result of which is the DM-time data. In such 
representation the true DM of the astronomical source 
appears as a sharp, localized feature that separates the 
signal from terrestrial interference, and providing a 
structured representation that can serve as an effective 
input for machine learning and deep learning models 
aimed at pulse detection or classification.

Astrophysicists are actively applying modern machine 
learning and deep learning methods to the detection and 
study of pulsars and FRBs. However, a review of the 
literature shows that such tasks are often addressed 
using rather complex and deep neural networks (see, 
e.g., Agarwal et al., 2020), which were originally 
developed for ILSVRC and other computer vision 
competitions. These models indeed demonstrate 
impressive performance in the classification and 
detection of astronomical radio signals. Nevertheless, it 
is important to note that such signals exhibit 
significantly lower complexity compared to images in 
ImageNet. This mismatch raises the question of whether 
the use of extremely deep and computationally heavy 
architectures is fully justified in this domain.

Given the relatively low complexity of the data, it can be 
assumed that the task of pulse detection can be 
successfully solved with models containing far fewer 
parameters. Minimalist architectures offer a number of 
advantages over deep networks: smaller model size, 
substantially faster inference speed, and generally easier 
to train, require fewer computational resources, and can 
be more readily adapted to real-time applications. In 
addition, lightweight models can be easily implemented 
on Field Programmable Gate Arrays (FPGAs). 

In this work, we tested a group of four extremely 
compact models and evaluated their ability to 
successfully detect individual pulses from the Crab 
pulsar (B0531+21), using observational data obtained with 
the Effelsberg radio telescope operated by the Max 
Planck Institute for Radio Astronomy. A key feature of 
these architectures is the use of a Global Average 
Pooling layer, which makes it possible to drastically 
reduce the number of parameters without a significant 
loss in performance.

In addition to minimalist models, this study explored 
training solely on synthetic data with subsequent testing 
on real observations. Given the current comprehensive 
understanding of pulsar emission mechanisms and the 
factors determining the observable pulse morphology, it 
is now possible to construct highly realistic synthetic 
datasets, which were therefore employed for training.

Obtaining large labeled datasets is often difficult, 
especially for rare events such as FRBs, so synthetic 
data provide a practical solution. Pulses were generated 
with the PulsarRFI_Gen submodule of the ML-PPA 
framework (gitlab.com/ml-ppa), capable of producing 
realistic dispersed signals.

Noise was modeled in two ways: (1) random shifting of 
frequency channels (real mode), and (2) generation from 
statistical parameters of real data (synt mode). Each 
dataset contained 94,000 synthetic pulses of the Crab 
pulsar (1,000 per SNR from 6 to 100), 47,000 broadband 
interference samples, and 47,000 noise-only DM–time 
images.

In total, four datasets were produced: two for training 
and two unseen for validation. Final tests used real 
observations of the Crab pulsar (B0531+21) from the 
Effelsberg radio telescope of the Max Planck Institute for 
Radio Astronomy. Model performance was evaluated 
with the F1-score.
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Conclusion
The evaluation of four lightweight models on both 
synthetic and real data from the Crab pulsar 
(B0531+21) confirmed their effectiveness. The 
models achieved average F1-scores above 90%, with 
peak values exceeding 96%, showing that high 
detection accuracy does not require large, 
computationally expensive networks. Even under 
reduced signal-to-noise ratios and in the presence 
of synthetic noise, the models demonstrated stable 
generalization.

These results highlight the potential of combining 
synthetic datasets with compact architectures as a 
practical strategy for pulsar and FRB detection. 
Such an approach simplifies implementation, 
reduces computational demands, and opens 
opportunities for efficient real-time processing in 
large-scale radio astronomy projects.

Global Average Pooling (GAP) Layer
It is a neural network layer often used in 
convolutional architectures to reduce dimensions 
efficiently:
It computes the average value of each feature map, 
replacing spatial dimensions with a single number. 
This avoids overfitting, decreases parameter count, 
and improves generalization.
Unlike fully connected layers, it has no learnable 
weights, making the model simpler and faster while 
preserving semantic information.
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Feature Maps Averaging Output

Model name Mode Size (KB) Parameters Accuracy (%)

LeNet5 + GAP real 143 8 471 99.99

synt 105 5 134 99.99

MobileNet V1 Trim real 96 658 99.97

synt 96 584 99.98

Mini-SqueezeNet real 99 1 424 99.98

synt 103 1 960 99.96

Shallow CNN real 78 2 942 99.99

synt 87 3 666 99.98

F1real (%) F1synt (%) F11 (%) F12 (%) F13 (%) F14 (%) F1aver (%)

99.97 99.98 99.19 98.33 93.09 90.08 96.77

99.02 98.98 88.66 86.75 64.66 73.09 85.19

99.89 99.89 98.77 97.53 89.66 85.29 95.17

33.33 33.33 32.38 32.19 31.85 29.53 32.10

98.76 98.79 93.98 81.77 62.83 70.87 84.50

99.92 99.93 93.06 92.68 89.22 84.80 93.27

99.90 99.90 97.64 96.30 85.46 87.31 94.42

99.87 99.87 95.63 97.07 92.52 90.22 95.86

1. MJD 58713, tres = 64.0 μs, BW: 1330 - 1460 MHz

2. MJD 59000, tres = 102.4 μs, BW: 1210 - 1530 MHz

3. MJD 59000_2, tres = 64.0 μs, BW: 1210 - 1530 MHz

4. MJD 60482, tres = 81.92 μs, BW: 1200 - 1600 MHz
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