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Abstract We explore what it means to build a scientific “theory” of
a black-box model, drawing on van Fraassen’s Constructive Empiricism
(CE), and demonstrate how such a theory can be used for explainable
AI (XAI). A scientific theory is more than just an explanation: it not
only has value in its own right, but also serves as a robust framework
for answering different questions. According to CE, a theory must be
both empirically adequate (i.e., accurate with respect to observed data)
and shaped by pragmatic virtues, such as user preferences. These criteria
align closely with the needs of XAI, which require fidelity and compre-
hensibility. We turn CE’s core notion of empirical adequacy into three
concrete criteria: consistency, sufficient predictive performance, and al-
gorithmic adaptability. We develop the Constructive Box Theorizer (Co-
BoT) algorithm within this framework. As a proof of concept, we present
a qualitative discussion showing that CoBoT can produce empirically ad-
equate theories and illustrate the utility of a theory in XAI.

Keywords: Constructive Empiricism · Explainable AI · Rule Based Ex-
planations · Philosophy of Science · Machine Learning

1 Introduction

In this paper we propose to view explanations in Explainable AI (XAI) as a
form of scientific explanation that draws from an underlying theory. This per-
spective allows us to step outside the established conceptual frameworks of XAI.
XAI methods are typically classified by their scope (global explanations aim to
capture the entire behavior of the model, while local explanations focus on in-
dividual predictions) or the specific questions they address [8,10,21]. However, a
scientific theory is more than a single explanation: It is developed independently
of particular questions and can be evaluated on its own merits. This leads us
to our central question for this work: If we treat a black-box classifier as the
subject of scientific inquiry, what does it look like to build a scientific theory of
its behavior and how does it support explanation?
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To answer this question, we build on the conception of science and scientific
explanation known as Constructive Empiricism (CE), as formulated by the philo-
sopher of science Bas van Fraassen in [4]. We find that CE naturally aligns with
the core concerns of fidelity and comprehensibility in XAI. Fidelity describes the
degree of “truthfulness” of the explanatory information with respect to the un-
derlying black-box. Comprehensibility ensures that this information is accessible
and meaningful to users [2,14]. We find that this aligns directly with the notions
of empirical adequacy and pragmatic virtues that lie at the heart of CE.

According to CE, a scientific theory explains directly observable phenomena
by positing underlying processes and structures that are not directly observable,
and by describing their possible states and interactions. The aim of a scientific
theory is to be empirically adequate, which requires a theory to be consistent
with all available observations. The scientist accepts the theory, which entails
the belief in its empirical adequacy, and a commitment to use the conceptual
resources of the theory to explain future phenomena when they are encountered.
In CE, the central aim of science is to produce useful insights. The scientist is
thus free to shape the theory the way that best serves their needs, with those
guiding considerations captured by the concept of pragmatic virtues. For XAI,
we argue that empirical adequacy builds a foundation for justified trust, while
pragmatic virtues allow the user’s needs to inform the shape of the theory and
the explanations. Our contributions are threefold:

1) We operationalize empirical adequacy for XAI by establishing three criteria:
(i) to address the agreement with observations we require consistency of
the theory with its training data, (ii) to subsequently justify acceptance, we
require sufficient predictive performance on unseen data and (iii) computa-
tional adaptability that guarantees that the theory can be revised algorith-
mically to incorporate new observations. This mimics the scientific process of
continuously adjusting the theory to account for new observations. Explan-
ations derived from the theory are thus always based on the most complete
and up-to-date representation of the model’s behavior.

2) We demonstrate the utility of the CE conceptual framework to XAI by
presenting a novel algorithm, called Constructive Box Theorizer (CoBoT),
that incrementally builds a system of axis-aligned hyperrectangles (i.e., boxes)
as a “theory of the black-box”. We show how CoBoT can be integrated within
the CE framework and assess its performance against a range of criteria for
XAI algorithms that naturally arise within this conceptual framework. In
short: Empirical adequacy is demonstrated by assessing predictive perform-
ance on seen and unseen samples. The algorithm is built to support incre-
mental updates, addressing the need for adaptability. To justify the claims of
fidelity, i.e., that the boxes reflect the actual black-box behavior, the boxsys-
tems and subsequent explanations are constrained by an attribution method.
The compactness, i.e., length of all rules, is directly controllable by the user.

3) We demonstrate the concept of a “theory of a black-box” and its usefulness
by illustrating how the resulting data structure naturally supports different
inquiries at various levels of granularity.
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The remainder of the paper is structured as follows: Section 2 presents how
CE has been discussed so far in the context of XAI and highlights two rule based
explanation methods to facilitate the discussion later. Section 3 gives a practical
summary of CE and explains the conceptual applicability to XAI. Finally, in
Section 4 we develop our algorithm CoBoT, before illustrating its use as a theory
in Section 5. Code is available on github.com/semueller/CoBoT.

2 Related Work

In the XAI literature, to the best of our knowledge, Constructive Empiricism is
mostly discussed for the particular theory of explanation it provides, not for its
larger scope as a philosophy of science. Naturally, as a philosophy of science that
views science ultimately as an epistemic endeavor and promotes a pragmatic
approach to scientific inquiry, CE has to provide a framework for explanation.

CE is mentioned for its theory of explanation in a line of works dealing with
the assessment of explainability and how adopting the view on the explanat-
ory process provided by a particular theory of explanation in turn impacts the
evaluation of explanations [18,20]. These works deal with important questions
in XAI that are very distinct from the scope of our work.

Another work [12], that we see complementary to ours, employs CE’s view on
explanation to describe a conceptual framework where explainability methods,
given access to input data and the black-box, produce outputs in accordance with
specifications provided by the user. In line with van Fraassen, these specifications
are descriptions of “the kind of explanation required”, formalized in a relevance
relation. The relevance relation establishes an explicit connection between ob-
servations and mutually exclusive propositions (explanatory statements). The
authors discuss how their framework captures explanations for Bayesian net-
works and for graph neural networks. For the former the hypothetical user poses
a question in the form of “request for arguments” and explanations take the form
of probabilistic arguments. For graph neural networks the paper shows how an
existing XAI method can be expressed as a specification. While the framework
directly adopts the notion of explanation from CE, it leaves out a crucial aspect:
Within CE, explanations are derived from a theory. [12] demonstrates the con-
ceptual utility of CE’s interpretation of explanation as a suitable framework for
XAI research. Our work continues with the conceptualization of CE for XAI and
provides a concrete proof of concept implementation of a theory for a black-box.

Rule Based Explanations To ground our discussion in a concrete setting, we
will build on rule based explanations. Framed as a specification, rule based ex-
planations posit labeled interval constraints as propositions and establish the
connection that if the values of a sample (observation) lie within the interval
constraints, the proposition is fulfilled. We summarize two rule based explana-
tion algorithms for later reference:

Anchors [16] was developed as a local explanation method that explores the
decision surface of a black-box around an input sample. Given a user-defined

https://github.com/semueller/CoBoT.git
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precision threshold, the algorithm performs a greedy search around the sample
that sequentially adds more interval constraints, to find a box in which the black-
box prediction remains the same (up to the specified threshold). The authors
state that their precision preserving search criterion is naturally biased towards
shorter, more compact, rules. However, the total number of constraints used by
the final “Anchor” is out of control of the user. Also, the empirically obtained
rules may be unbounded in some direction.

CFIRE [11] computes a global rule model with strictly bounded interval con-
straints. Given the black-box, a set of labeled input samples and a local ex-
plainer, CFIRE computes a set of rules for each class separately. To identify rule
candidates, the algorithm performs closed frequent itemset mining on the local
explanations. Samples whose local explanations are in the support of the same
itemset are used to fit a decision tree. The decision tree is tasked to discriminate
said samples from all other samples, i.e., also from samples from other classes
and irrespective of their local explanation. After processing all itemsets, the al-
gorithm greedily selects a subset of candidate rules by computing the minimal
set cover. This step is still performed for each class separately. The resulting
rule models are compact and accurate. However, examples provided in the pa-
per also show that rules for different classes may overlap. For samples falling
into the overlapping region, CFIRE applies a post-hoc heuristic to resolve the
ambiguity.

3 Operationalizing Constructive Empiricism

In this section we give a practical introduction to Constructive Empiricism (CE)
as discussed in [4] and how it relates to XAI. We briefly set the scene before
discussing the notions of empirical adequacy and pragmatic virtues. We shall
find that these notions address the two core aims of XAI: provide both true and
useful insights into a black-box.

Setting the scene We consider the setting where we are given a classifier function
f ∶ Rd

→ C. We assume that the classifier does not change over time. The goal
is to develop an algorithm that produces an empirically adequate data structure
that is useful for rule based explanations.

Empirical Adequacy To describe the relation between a scientific theory and
the domain it aims to describe, van Fraassen uses the term empirical adequacy.
It has three components: 1) A theory must be able to represent all possible phe-
nomena (observations made through measurements). For science in general, the
former can pose a challenge (e.g., think of the step from Newtonian Mechanics
to the Theory of Relativity). In our case however, the hypothesis class of the
black-box is known and observations are members of its domain and co-domain.
2) The theory must be internally consistent with all actually encountered obser-
vations. In machine learning terms this translates to perfect training accuracy.
3) For a scientist to accept a theory means a) to believe that it is empirically
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adequate and b) to commit to use it. Committing means that they must be will-
ing to work with it in the hopes that it will be successfully applicable to future
observations or can be adapted to account for them. In van Fraassen’s view of the
scientific process, theory building is iterative, where observations inform theory
building which leads to new experiments and so on. To justify the acceptance
of a “theory of a black-box”, we argue that the theory must be algorithmically
adaptable and proof its applicability quantitatively up to the standards of the
user, e.g., by exceeding a predefined accuracy score on a given test set.

Pragmatic Virtues The evaluation of XAI methods separates the evaluation
of the information content of an explanation from the evaluation of its compre-
hensibility. For example, in [14] the authors distinguish “Content”, “Presentation”
and “User”. The work in [2] goes one step further and argues that a content-first
evaluation scheme builds the foundation for trustworthy explanation. CE’s em-
phasis on empirical adequacy fits this content-first scheme and we argue that
the theory of a black-box thus provides a foundation for justifying trust in the
explanations derived from it. How do user centric criteria fit in this picture? For
van Fraassen, to accept a theory is not only to believe that it is empirically ad-
equate, but also to be committed to using the theory to make new predictions,
discover new observable phenomena, and design new experiments. Thus, he ar-
gues, if a scientist is being presented with two empirically adequate theories, it is
rational to prefer one over the other, solely on the basis of usefulness – whatever
this may entail for them. The reasons the scientist may provide for preferring one
theory over another are subsumed under the notion of pragmatic virtues. Ana-
logously, the user is of central importance in XAI: The request for explanation
implies a need (or at least desire) for insight, hence it is justified to construct
the output of XAI algorithms according to user needs. Many efforts in XAI are
concerned with the definition and evaluation of user needs [2,3,14,17,24]. In the
particular case of our setting, rule based explanations, compactness and fidelity,
are, among others, desired properties of explanations that go beyond the mere
predictive agreement of rule and black-box [11,14,16].

Summary XAI requires both truthful and comprehensible explanations. We
saw that both concerns are captured directly by the notions of empirical ad-
equacy and pragmatic virtues, respectively. Empirical adequacy entails consist-
ency of the theory with the available observations on the one hand and the
commitment of the scientist to work with the theory on the other. From this we
motivated the requirements of (i) consistency, (ii) algorithmic adaptability and
(iii) sufficient predictive performance. Drawing a direct connection to content-
first evaluation schemes in XAI, we argue that the empirical adequacy of a theory
provides the necessary basis to justify trust into explanations derived from it. By
emphasizing the epistemic goal of the scientist, adapting the theory to maximize
its usefulness to the practitioner is a rational requirement. Thus, CE provides
the grounds on which to embed user needs, that go beyond empirical adequacy,
directly into the theory.
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4 Example: The Constructive Box Theorizer Algorithm

We now describe the CoBoT algorithm (see Algorithm 1). Recall that, in order
to achieve empirical adequacy and justify acceptance, the algorithm needs to
achieve consistency with all observations, adaptability, and sufficient predictive
performance on unseen samples. The first two properties are addressed algorith-
mically within CoBoT, while the latter will be demonstrated in Section 5. Re-
garding pragmatic virtues, CoBoT addresses (internal) fidelity and compactness,
since these criteria are central to rule-based explanations [11,14,16], which we
want the theory to support.

We first give a brief overview of the algorithm and introduce the notation.
Then we go through the algorithm step-by-step and key design choices in light of
empirical adequacy and pragmatic virtues. Finally, we discuss the shortcomings
of Anchors and CFIRE in providing theories.

In brief, CoBoT incrementally constructs a set of boxsystems B, each cover-
ing a distinct subspace of the input space and consisting of a set of axis-aligned
bounded boxes b, each associated with a label c indicating the corresponding
target class. To facilitate fidelity, the subspaces are derived from a local ex-
plainer method Φ using an indicator function I. For a given local explanation,
this function selects the feature set I ⊆ [1..d] , that represents the most im-
portant dimensions (e.g., all dimensions for which attribution scores exceed a
positive threshold). For each unique feature set I encountered, a corresponding
boxystem is computed, based on all observed samples x with I(Φ(x)) = I. These
boxsystems are constructed ensuring that 1) consistency with all observations is
guaranteed and 2) each observation is unambiguously associated with a single
box b. In case CoBoT encounters a new, conflicting observation (i.e., one that
falls into a box with a wrong label), only the inconsistent box is adapted. To
facilitate comprehensibility, the maximal size of I can be controlled by the user.

Step-by-Step Description 1) Initialization As input, CoBoT requires a
black-box model f , an input sample x, a local explainer function Φ, an indicator
function I, a list of observations O, and a (possibly empty) set of boxsystems B.
In lines 1 to 3, CoBoT computes the class label c for the input sample x and the
local explanation a, from which it derives the feature set Ix of most important
dimensions. The observation triple (x, c, Ix) is then added to the set of obser-
vations O in line 4. The local explainer is included to ensure internal fidelity
with the boxes. Internal fidelity [24] (also called reasoning-completeness [14] or
faithfulness [5]), requires an explanation to not only reproduce the input-output
mapping but to do so in a way that reflects the actual reasoning process of the
black-box. While fitting a decision tree to match the black-box predictions may
satisfy external fidelity, we have no grounds to believe in its internal fidelity
because of predictive multiplicity [9] (i.e., f may allow for functionally differ-
ent but equally well performing approximations of itself). Therefore, we need
to constrain the solution space of viable boxystems. Since the black-box is (by
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Algorithm 1 CoBoT
Input: Black-box model f ∶ Rd

→ C for some positive integer d and finite set C, local
explainer Φ for f , a binarization function I for local explanation, input sample x, set
of boxsystems B, set of encountered observations O
Output: Set of boxsystems B
1: c ← f(x)
2: a ← Φ(f, x, c)
3: Ix ← I(a) ▷ obtain set of important dimensions
4: O ← O ∪ {(x, c, Ix)}
5: BIx ← B if ∃(I,B) ∈ B with I = Ix, elseNone
6: if BIx = None then ▷ None on first encounter of itemset
7: bx ← CreateSingleton(x, c, Ix)
8: B ← B ∪ {(Ix, {bx})}
9: else

10: if ∃b ∈ BIx with x ∈ b then
11: if Label(b) ≠ c then
12: BOb

← {CreateSingleton(o, co, Io) ∣ (o, co, Io) ∈ O ∧ Io = Ix ∧ o ∈ b}
13: B

′
Ix ← Merge((BIx \ {b}) ∪BOb

)
14: B ← (B \ {(Ix, BIx)}) ∪ {(Ix, B ′

Ix)}
15: else ▷ no existing box contains sample
16: bx ← CreateSingleton(x, c, Ix)
17: B

′
Ix ← Merge(BIx ∪ {bx})

18: B ← (B \ {(Ix, BIx)}) ∪ {(Ix, B ′
Ix)}

19: return B, O

definition) opaque, i.e., its “true reasoning” is unobservable, we use local explana-
tion methods to obtain constraints for each observation. Only features indicated
as important for a given sample are used to construct the boxes.

2) Creating a new boxsystem Line 6 begins with the consistency check and
the updating logic. It checks whether the feature set Ix is present in the set of
boxsystems. If not, line 7 creates a singleton-box bx around x in the subspace
determined by Ix, associates it with the corresponding class label, and adds the
tuple (Ix, {bx}) to B. CoBoT then returns the updated set of boxsystems B and
observations O.

3) Resolving inconsistency In case Ix had been encountered before, CoBoT
proceeds in line 10 and checks if there exists a box b in the corresponding box-
system BIx that covers x. If so, line 11 checks if the box’s label matches the
black-box output c. If the labels match, the algorithm returns. Otherwise, the
boxsystem is updated: Line 12 selects all samples from the current list of obser-
vations that lie within the affected box and places each into its own singleton
box. In the next step (line 13), the inconsistent box b is removed from BIx and
all singleton-boxes in BOb

are attempted to be merged with the remaining boxes
in BIx . To this end, we use an adaptation of the algorithm presented in [22].
Given a set of boxes, the algorithm greedily selects the closest two boxes having
the same class, and attempts to join them. If a join leads to an overlap with any
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other box , the join operation is reverted. This process continues until no further
consistent mergers are possible. While the original algorithm [22] was developed
for binary classifications, we adapt it mutatis mutandis to multi-class problems.
The algorithm has several desirable properties for our scenario:

i It naturally guarantees that all indicated dimensions in Ix are used. In con-
trast to Anchors, via I, CoBoT provides direct control over rule complexity.

ii The algorithm guarantees to return a boxsystem that is fully consistent with
the training data, thereby fulfilling the consistency requirement of empirical
adequacy.

iii None of the computed boxes overlap, meaning that 1) each sample induces
the construction of at most one box and 2) no sample can fall into two boxes
at the same time. This avoids the ambiguity problem the rule systems of
CFIRE struggle with.

iv All boxes are bounded on all sides (i.e.,, unlike Anchors, no box extends to
±∞ on any side) and do not extent beyond values observed in the input
data. Thus, each box is strictly tied to observations.

If boxes from two different boxsystems, say BI1 and BI2 , overlap, this is
of no concern, because Φ indicated that f used different sets of features for
its decision. Continuing on line 15, the set of boxsystems is updated with the
adapted boxsystem and CoBoT returns.

4) Expanding coverage The final else case is entered if a boxsystem does
exist for Ix, but none of the boxes in BIx cover the sample. In that case line 16
creates a new singleton box around x and line 17 performs the merge operation
described above in an attempt to extend any existing consistent box by the
singleton-box. The set of boxsystems is updated and CoBoT returns.

Classification using B To assess the predictive performance of B on an unseen
sample x, we first compute the feature set Ix for x and check if the respective
boxsystem BIx contains a box containing x that has the correct label. If such a
box with the correct label exists, the prediction is successful, else not. Constrain-
ing the prediction to the local explainer, the assessed predictive performance also
reflects the internal fidelity of the rules.

Pragmatic virtues in practice In Section 3, we established that, given two
empirically adequate theories, CE gives no objective criterion to choose one over
the other, but that it is rational to prefer a theory solely based on its “usefulness”.
We have already hinted at several aspects of what this entails.

Since we develop CoBoT with the goal to support explanation, it is reason-
able to incorporate XAI quality criteria into it. The first one was internal fidelity.
Constraining CoBoT to “important” subspaces is not done to fulfill empirical ad-
equacy, but rather to ensure the boxsystem reproduces the black-box’s behavior
in specific ways that align with its reasoning process, as far as that is observable.
Internal fidelity is thus, in the sense of CE, a pragmatic virtue.

The choice of local explainer is equally pragmatic. The disagreement prob-
lem in XAI states that different local explainers may give different explanations
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for the same model output, but that there is no principled way to resolve the
disagreement and decide “which method is correct” [7]. [11] demonstrated that
the quality of rules produced by CFIRE can greatly vary depending on the local
explanation method used. Another practical consideration is that some methods
have significantly lower computational costs than others (e.g., Integrated Gradi-
ents vs. SHAP). CoBoT is agnostic to the local explainer method. By pragmatic
virtue, the “best” local explainer to use is the one that is most practical.

Lastly, we mentioned that compactness is a desirable property for rule based
explanations. It quantifies the length or total number of rules in an explanation,
a lower number being generally deemed better [11,14,16]. Since the intention is
that CoBoT makes it easy to extract useful explanations from it, we want to
have an ad-hoc way to constrain the solution space to find empirically adequate
boxsystems in low dimensional subspaces. To this end we modify the indicator
function I to extract the up-to-top-k most important features as per Φ. This gives
control over the maximal complexity of rules in each boxsystem. We denote the
adapted indicator function as Ik↑.

Theories from Anchors or CFIRE? In contrast to CoBoT, neither Anchors
nor CFIRE were build to provide theories. Still, it is insightful to discuss how
exactly they fall short. Both algorithms can be used to obtain a set of rules, and
differences to CoBoT in this regard have been made clear already (e.g., open
intervals, ambiguity). To compute rules, CFIRE also relies on local explanations
and performs an itemset mining step to find frequent patterns. To perform an
update when a feature set is missing, CFIRE needs to run the itemset mining
step again on all observations. In case the new sample does not belong to a
frequent pattern, it will still not be accounted for even after the update; thus
CFIRE cannot guarantee consistency. Performing an update with Anchors seems
straightforward: for each sample a new Anchor is computed, which guarantees
consistency. However, applying Anchor rules to unseen test samples does not
take internal fidelity into account, because no local explainer is involved and
the rules are applied ad-hoc. Artificially comparing Anchors against any local
explainer will yield no clear conclusion because of the disagreement problem
mentioned above. Likewise, computing an “Anchor” for a test sample and com-
pare it against an existing one will be equally unhelpful because of the heuristic
nature of Anchors.

5 Extracting Information from CoBoT

We now apply CoBoT to three real-world datasets. Our qualitative analysis
shows that empirical adequacy can be achieved and illustrates how the choice of
local explainer Φ and the maximum size k of the subspace impacts the results.
Further, we discuss how the theory computed by CoBoT can be used to produce
different standard explanations.
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Table 1: Overview of datasets. Name, number of classes (∣C∣), dimensionality (d),
black-box accuracy, and number of samples for CoBoT.

dataset ∣C∣ d f accuracy #samples for CoBoT

Abalone [13] 3 7 0.64 1671
Breast-w [6] 2 9 0.98 10.000
Dry Bean [1] 7 16 0.92 5445

Setup and Hyperparameters We apply CoBoT to three neural networks (4 hidden
layers, 32 neurons each, ReLU activation) trained on three tabular tasks. An
overview of the datasets is provided in Table 1; the number of classes ranges
from 3-7, and the number of features from 7-16. Each dataset is split into 3 sets:
one for training the black-box f , a second for assessing the test performance of
f and computing B with CoBoT, and a third serving as a validation set for B.
As local explainers Φ we use Lime (LI) [15] and Integrated Gradients (IG) [23].

We will discuss one particular theory produced for f trained on the Abalone
dataset, showcasing its evolution and its final state from different perspectives.
We then vary the local explainer Φ ∈ {IG, LI} and the subspace size k ∈ {2, 4, 6}
for all three datasets.
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Figure 1: Abalone, Φ=IG, k=2. Left axis (“Ratios”): Compression is defined as 1 −
#boxes

#samples
over time, Validation Accuracy tracks accuracy on test set, success rate is

the ratio of samples that did not trigger an update. Right axis (“Counts”): #Feature
Sets denotes the number of unique feature sets, #singletons and #boxes count the
number of singleton and the total boxes, respectively. After processing 1671 samples,
the set of boxes contain less than 20 singletons. Across all observations, 328 updates
were performed.

Evolution of the Theory We analyze in more detail the set of boxsystems
B computed for f that was fit on the Abalone dataset. CoBoT uses Φ=IG and
k=2. Figure 1 tracks the performance on the test set and various other stat-
istics of the theory during the observation phase. CoBoT started with B = ∅
and processed 1671 samples (x-axis), leading to 328 updates. Compression (red)
tracks the space saving ratio of the total number of boxes and the number of
samples observed. Success Rate (purple) tracks the relative number of samples
that were correctly covered, i.e., that did not trigger an update. Validation Accur-
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Figure 2: Evolution of a boxsystem. Each individual image shows the same boxystem
after different updates. Updates number [9, 40, 61, 144 (final)] (Abalone, Φ=IG, I2↑,
I = {3, 6}).

acy (green) and Coverage (cyan) show the predictive performance of the theory
on the held-out test set. We also track various counting statistics, namely the
total number of features sets (gray), the total number of boxes (orange) across
all features sets and the total number of singletons (blue) contained within the
box count. In the end, B contained 18 unique feature sets comprised of 72 boxes.
The final accuracy was 0.87 with a coverage of 0.89, meaning the false positive
rate is only 0.02. As expected, the number of feature sets and boxes rise rapidly
in the beginning. Around 1100 and then again near 1600 processed samples,
the number of boxes and singletons both decline, indicating that an update was
triggered that led to merges of several singletons into boxes.

Because we chose k = 2, we can directly visualize a boxysystem. Figure 2
shows a section of subspace of the boxsystem for feature set I = {3, 6} at dif-
ferent points in time. Three classes are present, indicated by the three different
box colors. Observations are visualized as dots. The scatterplot reveals that the
samples are linearly correlated within the subspace. Blue and green samples are
well separated, whereas the orange samples lead to an increase in complexity of
the boxsystem over time. Of the 328 total updates, 144 were performed on this
boxsystem alone.

To obtain a more global view on B, Figure 3 shows a 2d UMAP embedding
of all datapoints, color-coded by the feature set they were mapped to and the
marker shape indicating the class label predicted by f . The color imbalance
highlights that the feature sets have vastly different support. For example, there
is a single one dimensional feature set {6} (dark brown) with very low support
(n=2). Feature 6 appears most often across all feature sets. Feature sets {2, 4}
(orange) and {4, 6} (light purple) are mostly confined to the upper right region,
whereas several other sets, e.g., {1, 4} (dark blue), {3, 6} (dark green), and {2, 6}
(olive), span across large parts of the manifold. In particular, the datapoints
colored in dark green belong to the boxsystem visualized in Figure 2. We now see
that this is the most populated one, explaining the comparatively large number
of updates. Datapoints colored in orange all share the same marker, meaning
that this feature set is particularly indicative for a single class. f seems to use
similar features for samples that are far apart, and different features for samples
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Figure 3: 2d UMAP embedding of samples. Colors indicate feature sets, marker style
indicates predicted classes (Abalone, IG, I2↑).

that are close together. We see how the theory produced by CoBoT naturally
gives insights into global and regional properties of f (cf. related questions in [8]).

Table 2 summarizes the results for different Φ and k values. For each black-
box, some configuration of Φ and k reaches a final accuracy of at least 0.97,
noting that both hyperparameters can have a notable impact on that result.
Overall we can observe that lower values of k lead to better accuracy, fewer
unique feature sets and, most of the time, fewer boxes compared to larger k.
This might be an effect of the increased amount of data needed for larger k.
Accuracy and Coverage coincide in nearly all cases, meaning no false positives.
While LI leads to the better-performing theory on both Abalone and Dry Bean,
the method struggled on Breast-w, where it failed to produce usable explanations
in 56% of the cases. In those cases, no attribution value was positive and the
binarization Ik↑ mapped the sample to an empty set. Conceptually, a sample
with “no supporting features” makes no sense. However, by pragmatic virtue, we
are free to use IG, which did not encounter this issue.

Retrieving Explanations The data structure produced by CoBoT naturally
supports different explanations. Algorithm 2 and Algorithm 3 extract a local and
a contrastive explanation, respectively. Both algorithms operate directly on the
data structure, conditioning their explanation on the local explainer to increase
internal fidelity of their output. Algorithm 2 answers the question “Given x, why
did f predict c?” and provides explanations in the same output format as CFIRE
and Anchors. Algorithm 3 answers the question “Given x, why did f predict c
and what other class is the sample most similar to?”, supplying in its output
also a neighboring box of a different class. It could be easily adapted to give
a targeted answer “Why c and not c

′ ?” by restricting the search in line 9 to b

line:3search
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Table 2: Results for varying Φ ∈ {IG, LI} and k ∈ {2, 4, 6} for all three datasets.
Testset sizes were 626, 1050, 1050 samples for Abalone, Breast-w and Dry Bean, re-
spectively. On Breast-w, for all but 4431/10000 samples the LI explanations contained
negative scores only, meaning Ik↑ returned an empty set which is conceptually unin-
terpretable (denoted by ↯).

dataset Φ k Acc. Cover. #updates #I #b #singletons
Abalone IG 2 0.87 0.89 328 18 72 17

4 0.84 0.85 445 62 99 28
6 0.83 0.83 498 86 136 57

LI 2 0.91 0.93 211 6 74 28
4 0.98 0.98 145 12 13 1
6 0.96 0.96 184 16 17 2

Breast-w IG 2 0.98 0.98 404 35 62 9
4 0.92 0.92 1552 158 252 52
6 0.87 0.87 2325 304 440 131

LI ↯ 2 0.47 0.47 58 6 6 0
↯ 4 0.47 0.47 165 17 17 5
↯ 6 0.46 0.46 272 19 19 2

Dry Bean IG 2 0.94 0.94 800 74 130 29
4 0.81 0.81 1658 337 359 124
6 0.74 0.74 2080 567 588 283

LI 2 0.97 0.97 528 52 71 14
4 0.87 0.87 1330 177 194 49
6 0.81 0.81 1813 291 304 102

associated with c
′. A different method could answer the question “What kind of

instance gets the same prediction” by returning the supporting samples of the
box computed as the local explanation. All these are standard questions arising
in XAI [8].

These questions can be easily answered within the theory, but of course, the
theory could also be probed with additional queries to verify the information it
provides. For example, instead of falling back to global statistics, local rule-based
explanations could retrieve individual performance statistics for the particular
box that was relevant to them. Further, explanation algorithms can not only be
used to extract information from the theory, but their inquiries can also inform
useful refinements. For example, they might highlight areas of the input space
that contain relevant information but where the theory lacks observations. Each
query thus offers an opportunity to update the data structure, incrementally
increasing its empirical adequacy and explanatory power over time. This way,
each explanation, regardless of the question it answers, improves the quality for
all subsequent explanations.

6 Conclusion

We explored the utility of constructing a “scientific theory” of a black-box through
the lens of CE. We found that CE’s core concepts of empirical adequacy and
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Algorithm 2 Local Explanation
Input: Ix, c, x, B

1: BIx ← B : ((I,B) ∈ B∧I = Ix) elseNone
2: if BIx = None then
3: return "Itemset unkown"
4: else
5: bx ← b : b ∈ BIx ∶ x ∈ b elseNone
6: if bx = None then:
7: return "Not Covered"
8: else if Label(bx) = c then
9: return bx

10: else
11: return "Wrong Label"

Algorithm 3 Contrastive Explanation
Input: Ix, c, x, B, a distance function d(., .)
between two boxes
1: BIx ← B : ((I,B) ∈ B ∧ I = Ix) elseNone
2: if BIx = None then
3: "Itemset unkown"
4: else
5: bx ← b : b ∈ BIx ∶ x ∈ b elseNone
6: if bx = None then:
7: return "Not Covered"
8: else if Label(bx) = c then
9: b¬c ← argmin

b′∈BIx∧Label(b)≠c
d(bx, b′)

10: return (bx, b¬c)
11: else return "Wrong Label"

pragmatic virtues naturally align with the key concerns of XAI, particularly fi-
delity and comprehensibility. We operationalized empirical adequacy by introdu-
cing three criteria: consistency, algorithmic adaptability, and sufficient predictive
performance. As a proof of concept, we developed CoBoT, that produce an em-
pirically adequate data structure as a theory. We showed how such a theory can
support inquiries at various levels of granularity.

Extending our exemplary discussion of CFIRE and Anchors from the per-
spective of CE, future work should continue to map out existing approaches in
XAI and assess their ability to produce theories.

Further, the specification framework proposed in [12] (see Section 2) offers a
promising direction for formalizing black-box theories and defining their inter-
faces for use in different scenarios. A theory with a set of specifications seems
like a natural extension to the tool developed in [19] that represents an interact-
ive, illocutionary explanation process. The tool integrates a single explanation
method and draws on a body of background information to deliver contextual,
but black-box unrelated, information to the user. The theory and specifications
could be used to enrich this pipeline.
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