Re-Assessing the Experiment / Observation Divide

Florian J. Boge

APP&P Workshop, Dortmund 2025

ARTICLE

Re-Assessing the Experiment / Observation-Divide

Florian J. Boge®

Institute for Philosophy and Political Science, Dortmund University, Dortmund, Germany Fmail: florian-johannes bosofftu-dortmund de

(Received 15 September 2023; revised 12 February 2024; accepted 03 June 2024; first published online 05 December 2024)

Abstract

The article revealuates the distinction between experiment and observation. It is first agreed that to get clear on what role observation plays in the generation of scientific knowledge, we need to distinguish "experiental observation" as a concept clearly connected to experience monotone "observation" in a technical sense and from "find observation" as a concept that reasonably contrasts with representation "as to the concept that reasonably contrasts with representation" as concept that reasonably contrasts with representation and from "find observation contraved a find the properties of the contrast of the contr

1. Introduction

Observations are central to empirical science, though what counts as an observation is all but obvious: we frazamen (1980) conical a notion that allowed him to distinguish observation from inference by fying observation to unaided sems-perceptions. Support (1982) critical empirical notions an inappropriate to scientific usage, but him own account was criticated auto narrow (logen and Woodward 1984) or even off the contraction of the contraction o

Furthermore, there is a complicated relation between observation and oppriment with "maintrame philosophy of science has had rather little to say dood" (Otaha 2011, 221). On one hand, experiments seen unthinkables without observations and the contraction of th

These questions can be answered only after due disambiguation. I shall hence distinguish "observation in the technical sense" (TO) from "experiential observation"

© The Authorfol, 2024, Published by Cambridge University Preus on behalf of the Philosophy of Science Association. Phile is an object Access article, databased under the terms of the Cenable Commons Attribution licence (https://orastivecommon.org/licenses/by/4.0/), which permits unrestricted re-use, daterbution and reproduction, provided the original article is received that the Central article is received the control of the Central article is received that the Central article is received that the Central article is received the Central article is received the Central article is received that the Central article is received that the Central article is received that the Central article is received the Central article is received the Central article is received that the Central article is received that the Central article is received that the Central article is received that the Central article is received the Central article is received the Central article is received that the Central article is received that the Central article is received the Central article is received to the Central article is received the Central article is received that the Central article is received that the Central article is received that the

Introduction

[T]he anomalous precession of the perihelion of Mercury [...] is inferred from many individual observations of Mercury and that inference involves considerable mathematical work as well as substantive auxiliary hypotheses. [...] It is nonetheless true that the precession of Mercury is often referred to by scientists as an 'observation.'

1. 'observation' \sim 'looking & seeing'

- 1. 'observation' \sim 'looking & seeing'
- 2. 'observation' ~'inferentially establishing'

- 1. 'observation' ∼'looking & seeing'
- 2. 'observation' ~'inferentially establishing'
 - · connection / difference?

• Michelson and Morley (1887) observed interference-fringes to determine earth's motion relative to the ether;

- Michelson and Morley (1887) observed interference-fringes to determine earth's motion relative to the ether;
- Geiger and Marsden (1913) observed scintillations to explore nucleus' structure

- Michelson and Morley (1887) observed interference-fringes to determine earth's motion relative to the ether;
- Geiger and Marsden (1913) observed scintillations to explore nucleus' structure
- how compatible with 'observational' being an antonym to 'experimental'? (Okasha, 2011; Woodward, 2003b)

· clarify the notion of 'observation'

- · clarify the notion of 'observation'
- single out the reading of the term relevant for comparison to experiment

- · clarify the notion of 'observation'
- single out the reading of the term relevant for comparison to experiment
- establish the epistemic hierarchy between them (or: whether there is one)

- · clarify the notion of 'observation'
- single out the reading of the term relevant for comparison to experiment
- establish the epistemic hierarchy between them (or: whether there is one)
- · check whether there is a dichotomy

Part I: Three Notions of Observation

Seeing with the unaided eye [is] a clear case of observation

too narrow

- too narrow
- · 'observation' of Higgs boson

- too narrow
- · 'observation' of Higgs boson
- → barely involves looking & seeing

information [...] transmitted [...] without interference, to [an appropriate receptor] from the entity x [...]

still too narrow

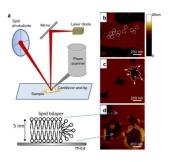
- still too narrow
- 'observation' of Higgs boson means 'effect $\geq 5\sigma'$

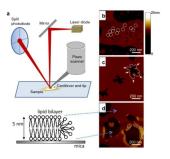
- still too narrow
- 'observation' of Higgs boson means 'effect $\geq 5\sigma'$
- → sometimes: decidedly statistical

Bird (2022)

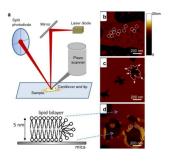
a representation [...] that carries information that p that is causally dependent on the fact that p and which can fulfil the role of basic scientific evidence [...].

Bird (2022)

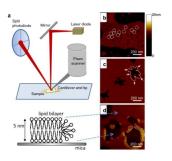

a representation [...] that carries information that p that is causally dependent on the fact that p and which can fulfil the role of basic scientific evidence [...].

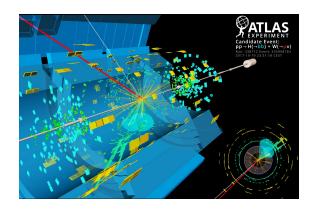

a representation [...] that carries information that *p* that is causally dependent on the fact that *p* and which can fulfil the role of basic scientific evidence [...].

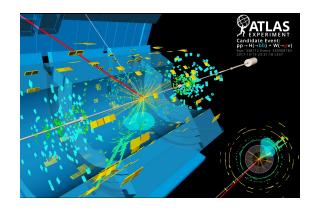
not always appropriate


- not always appropriate
- 'observation' of Higgs boson ($\geq 5\sigma$) contrasts with 'evidence' ($\in [3,5)\sigma$).

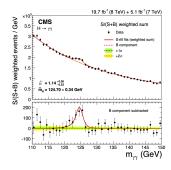
- not always appropriate
- 'observation' of Higgs boson ($\geq 5\sigma$) contrasts with 'evidence' ($\in [3,5)\sigma$).
- → 'We do have evidence for x's existence but we have not (really) observed it (yet).'

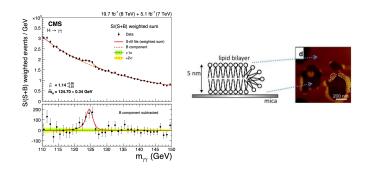



 pace Bird: observation takes place when images are interpreted as showing relevant phenomena



- pace Bird: observation takes place when images are interpreted as showing relevant phenomena
- pace Shapere: receiver? tip? cantiliever? laser beam? electronics used to convert beam into image...?




- pace Bird: observation takes place when images are interpreted as showing relevant phenomena
- pace Shapere: receiver? tip? cantiliever? laser beam? electronics used to convert beam into image...?
- → family of technical terms that vary across disciplines / applications (Fodor, 1984)

causal contact

success

x makes an observation on y in a technical sense (TO) iff x successfully establishes some relevant claim c about y by means of close causal contact with y within a scientific inquiry.

x makes an observation on y in a technical sense (TO) iff x successfully establishes some relevant claim c about y by means of close causal contact with y within a scientific inquiry.

· defines a family

x makes an observation on y in a technical sense (TO) iff x successfully establishes some relevant claim c about y by means of close causal contact with y within a scientific inquiry.

- · defines a family
- success and relevance determined by field and context

x makes an observation on y in a technical sense (TO) iff x successfully establishes some relevant claim c about y by means of close causal contact with y within a scientific inquiry.

- defines a family
- success and relevance determined by field and context
- null results may be TOs

van Fraassen (1980)

van Fraassen (1980)

van Fraassen (1980)

van Fraassen (1980)

Seeing with the unaided eye [is] a clear case of observation

plus dedicated attention (Shapere, 1982)

van Fraassen (1980)

- plus dedicated attention (Shapere, 1982)
- perceptual observation (PO)

van Fraassen (1980)

- plus dedicated attention (Shapere, 1982)
- perceptual observation (PO)
- · ineliminable

van Fraassen (1980)

- plus dedicated attention (Shapere, 1982)
- perceptual observation (PO)
- · ineliminable

van Fraassen (1980)

- plus dedicated attention (Shapere, 1982)
- perceptual observation (PO)
- · ineliminable -?

Imagine a future where our natural long-term memory can be augmented by a computer chip integrated with the hippocampus. [...] It is conceivable that people [...] might come to know the outputs of experiments like this, instead of reading them from a computer screen.

still requires recognition within one's experience

Bird (2022)

Imagine a future where our natural long-term memory can be augmented by a computer chip integrated with the hippocampus. [...] It is conceivable that people [...] might come to know the outputs of experiments like this, instead of reading them from a computer screen.

- · still requires recognition within one's experience
- experiential observation (EO)

Bird (2022)

Imagine a future where our natural long-term memory can be augmented by a computer chip integrated with the hippocampus. [...] It is conceivable that people [...] might come to know the outputs of experiments like this, instead of reading them from a computer screen.

- still requires recognition within one's experience
- experiential observation (EO)
- ineliminable

x makes an experiential observation (EO) on y iff y is an object of x's experience and x pays dedicated attention to y.

· 'object' could mean, say, 'color patch'

- 'object' could mean, say, 'color patch'
- necessary for all TO (even in Bird's example)

- 'object' could mean, say, 'color patch'
- necessary for all TO (even in Bird's example)
- · ... but also experiment

- · 'object' could mean, say, 'color patch'
- necessary for all TO (even in Bird's example)
- · ... but also experiment
- · ... TO can occur in experiment as well ...

- 'object' could mean, say, 'color patch'
- necessary for all TO (even in Bird's example)
- · ... but also experiment
- · ... TO can occur in experiment as well ...
- contrast observation-experiment?

observation in the field (Currie and Levy, 2019; Perović, 2021)

experiments can also be done 'in the field' (natural environment)

- experiments can also be done 'in the field' (natural environment)
- · lab can be field (scientist's behavior)

- experiments can also be done 'in the field' (natural environment)
- · lab can be field (scientist's behavior)
- · 'in the field' here: natural behavior

- experiments can also be done 'in the field' (natural environment)
- · lab can be field (scientist's behavior)
- · 'in the field' here: natural behavior
- doesn't allow control

Process *p* is a field observation (FO) of *y* by *x* only if in the course of *p*, *x* takes data on *y* in an unperturbed fashion, *i.e.*, without *x* exerting control over *y* by relevantly manipulating *y*'s state.

Process *p* is a field observation (FO) of *y* by *x* only if in the course of *p*, *x* takes data on *y* in an unperturbed fashion, *i.e.*, without *x* exerting control over *y* by relevantly manipulating *y*'s state.

Experiment

Process *p* is a field observation (FO) of *y* by *x* only if in the course of *p*, *x* takes data on *y* in an unperturbed fashion, *i.e.*, without *x* exerting control over *y* by relevantly manipulating *y*'s state.

Experiment

Process *p* is an experiment on *y* by *x* only if in the course of *p*, *x* takes data on *y* while exerting control over *y* by relevantly manipulating *y*'s state.

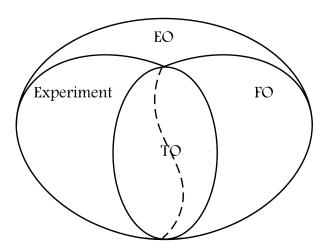
data-taking ≠ EO

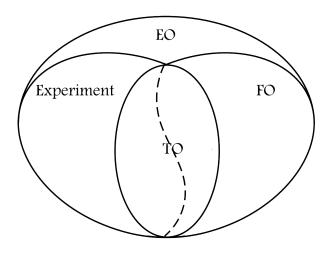
Process *p* is a field observation (FO) of *y* by *x* only if in the course of *p*, *x* takes data on *y* in an unperturbed fashion, *i.e.*, without *x* exerting control over *y* by relevantly manipulating *y*'s state.

Experiment

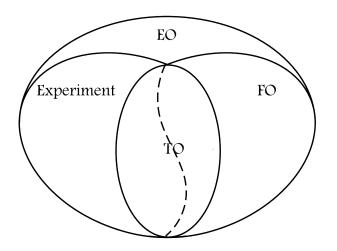
- data-taking ≠ EO
- relational character (Leonelli, 2015)

Process *p* is a field observation (FO) of *y* by *x* only if in the course of *p*, *x* takes data on *y* in an unperturbed fashion, *i.e.*, without *x* exerting control over *y* by relevantly manipulating *y*'s state.

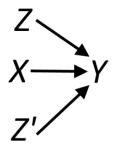

Experiment

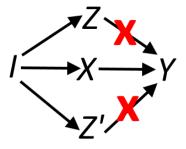

- data-taking ≠ EO
- relational character (Leonelli, 2015)
- still: representational (Bogen and Woodward, 1988; Delfino, 2020)

Process *p* is a field observation (FO) of *y* by *x* only if in the course of *p*, *x* takes data on *y* in an unperturbed fashion, *i.e.*, without *x* exerting control over *y* by relevantly manipulating *y*'s state.


Experiment

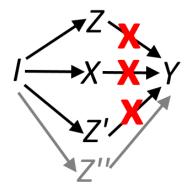
- data-taking ≠ EO
- relational character (Leonelli, 2015)
- still: representational (Bogen and Woodward, 1988; Delfino, 2020)
- causal contact


boundary sharp?



- boundary sharp?
- does it signify epistemic priority?

Part II: The Experiment / Observation Divide



(Woodward, 2003b)

•
$$p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$$

•
$$p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$$

•
$$p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$$

= $p(\forall x(Fx \to Gx))$

Okasha (2011)

•
$$p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$$

= $p(\forall x(Fx \to Gx))$

· in contrast:

Okasha (2011)

•
$$p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$$

= $p(\forall x(Fx \to Gx))$

· in contrast:

- $p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$ $= p(\forall x(Fx \to Gx))$
- in contrast: $p_{Fa}(\forall x(Fx \to Gx)|Ga) = p_{Fa}(\forall x(Fx \to Gx))p_{Fa}(Ga|\forall x(Fx \to Gx))/p_{Fa}(Ga)$

- $p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$ = $p(\forall x(Fx \to Gx))$
- in contrast: $p_{Fa}(\forall x(Fx \to Gx)|Ga) = p_{Fa}(\forall x(Fx \to Gx))p_{Fa}(Ga|\forall x(Fx \to Gx))/p_{Fa}(Ga) > p_{Fa}(\forall x(Fx \to Gx))$

- $p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$ = $p(\forall x(Fx \to Gx))$
- · in contrast: $p_{Fa}(\forall x(Fx \to Gx)|Ga) = p_{Fa}(\forall x(Fx \to Gx))p_{Fa}(Ga|\forall x(Fx \to Gx))/p_{Fa}(Ga) > p_{Fa}(\forall x(Fx \to Gx))$
- · oversimplifying, but...

- $p(\forall x(Fx \to Gx)|Ga \land Fa) = p(\forall x(Fx \to Gx)) \times p(Fa \land Ga|\forall x(Fx \to Gx))/p(Fa \land Ga)$ = $p(\forall x(Fx \to Gx))$
- in contrast: $p_{Fa}(\forall x(Fx \to Gx)|Ga) = p_{Fa}(\forall x(Fx \to Gx))p_{Fa}(Ga|\forall x(Fx \to Gx))/p_{Fa}(Ga) > p_{Fa}(\forall x(Fx \to Gx))$
- · oversimplifying, but...
- could also be realized in observation (Boyd and Matthiessen, 2023; Okasha, 2011; Woodward, 2003b)

Benefits of observation?

Benefits of observation?

could control not also be disadvantageous?

Benefits of observation?

- could control not also be disadvantageous?
- intrinsic benefits of FO?

 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

Wickström and Bendix (2000)

 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

Wickström and Bendix (2000)

 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

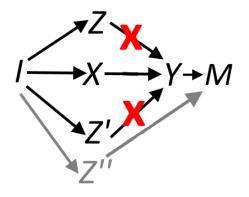
Wickström and Bendix (2000)

 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

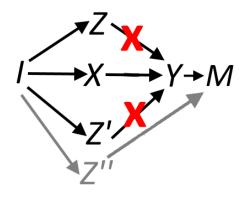
Wickström and Bendix (2000)

 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

Wickström and Bendix (2000)


It was not until illumination in the experimental room was reduced to a level corresponding to moonlight that [...] productivity finally started to decline.

· detailed engagement with workers: increase in motivation


 working-place illumination vs. productivity at Hawthorne plant (Roethlisberger and Dickson, 1939)

Wickström and Bendix (2000)

- · detailed engagement with workers: increase in motivation
- plethora of effects (McCambridge et al., 2014)

(Craver and Dan-Cohen, 2021)

(Craver and Dan-Cohen, 2021) ... possible... but...

Weber (2004)

Weber (2004)

Weber (2004)

Weber (2004)

Weber (2004)

preparation artifacts [...] arise when the biological specimen is fixed, cut, stained, or decorated for light or electron microscopy [...] probably still one of the most frequent forms of error in biological laboratories.

 \dots doesn't show that the relevant information could be gathered by means of $\overline{\text{FO}}$

internal vs. external validity of RCTs

internal vs. external validity of RCTs

internal validity: freedom from systematic biases

internal vs. external validity of RCTs

- internal validity: freedom from systematic biases
- external validity: generalizability

internal vs. external validity of RCTs

- internal validity: freedom from systematic biases
- external validity: generalizability

internal vs. external validity of RCTs

- internal validity: freedom from systematic biases
- external validity: generalizability

Averitt et al. (2020)

with every addition of a criterion [...] a [...] sub-population is identified with increasingly controlled conditions

internal vs. external validity of RCTs

- internal validity: freedom from systematic biases
- external validity: generalizability

Averitt et al. (2020)

with every addition of a criterion [...] a [...] sub-population is identified with increasingly controlled conditions

internal vs. external validity of RCTs

- internal validity: freedom from systematic biases
- external validity: generalizability

Averitt et al. (2020)

with every addition of a criterion [...] a [...] sub-population is identified with increasingly controlled conditions

internal vs. external validity of RCTs

- internal validity: freedom from systematic biases
- · external validity: generalizability

Averitt et al. (2020)

with every addition of a criterion [...] a [...] sub-population is identified with increasingly controlled conditions

· securing internal validity means exerting control

internal vs. external validity of RCTs

- internal validity: freedom from systematic biases
- · external validity: generalizability

Averitt et al. (2020)

with every addition of a criterion [...] a [...] sub-population is identified with increasingly controlled conditions

- · securing internal validity means exerting control
- does this impact external validity?

apply eligibility criteria from RCTs to select data from an FO

- apply eligibility criteria from RCTs to select data from an FO
- RCT externally valid → no differences between FO and RCT

- apply eligibility criteria from RCTs to select data from an FO
- RCT externally valid → no differences between FO and RCT
- nevertheless sometimes does (Averitt et al., 2020, 2ff.)

- apply eligibility criteria from RCTs to select data from an FO
- RCT externally valid → no differences between FO and RCT
- nevertheless sometimes does (Averitt et al., 2020, 2ff.)
- certain pieces of information destroyed by the very act of exerting control

- apply eligibility criteria from RCTs to select data from an FO
- RCT externally valid → no differences between FO and RCT
- nevertheless sometimes does (Averitt et al., 2020, 2ff.)
- certain pieces of information destroyed by the very act of exerting control
- e.g, on influence of 'undocumented factors' on treatment variability (ibid.)

Coda: Bordeline Cases?

[field experiments are] experiments designed and carried out by scientists to ape [...] laboratory conditions in the field

· include interventions, so ipso facto experiments

- include interventions, so ipso facto experiments
- 'field' in FO refers to natural behavior

- · include interventions, so ipso facto experiments
- 'field' in FO refers to natural behavior
- · here, refers to natural environment

An event or process not involving human action at any point will qualify as an intervention [...] as long as it satisfies [certain conditions]. [...] It is this possibility that scientists have in mind when they speak of "natural experiments."

still an FO, since no control exerted by human

- · still an FO, since no control exerted by human
- · underscores that FO may be epistemically on a par

the collisions of interest are primarily not those of protons, but of the quarks and gluons inside the proton. These can hardly be varied by targeted intervention [...].

Mättig (2021, 14432-3)

the collisions of interest are primarily not those of protons, but of the quarks and gluons inside the proton. These can hardly be varied by targeted intervention [...].

Mättig (2021, 14432-3)

the collisions of interest are primarily not those of protons, but of the quarks and gluons inside the proton. These can hardly be varied by targeted intervention [...].

Mättig (2021, 14432-3)

the collisions of interest are primarily not those of protons, but of the quarks and gluons inside the proton. These can hardly be varied by targeted intervention [...].

Mättig (2021, 14432-3)

the collisions of interest are primarily not those of protons, but of the quarks and gluons inside the proton. These can hardly be varied by targeted intervention [...].

Mättig (2021, 14432-3)

 administering drugs to mice, we want to find out about organs, not mice

- administering drugs to mice, we want to find out about organs, not mice
- "properties of interest" will always be obtained by selecting certain types of events (experimental noise)

- administering drugs to mice, we want to find out about organs, not mice
- "properties of interest" will always be obtained by selecting certain types of events (experimental noise)
- does that make animal studies "a hybrid of experimental practices and observation"?

Conclusions

· 'observation' can mean at least three different things:

- · 'observation' can mean at least three different things:
 - paying dedicated attention to an object of experience (EO)

- · 'observation' can mean at least three different things:
 - paying dedicated attention to an object of experience (EO)
 - taking data in an unperturbing fashion (FO)

- · 'observation' can mean at least three different things:
 - paying dedicated attention to an object of experience (EO)
 - taking data in an unperturbing fashion (FO)
 - successfully establishing a relevant claim based on causal contact (TO)

 if we want to assess observation's role in science, we need to be clear on what we mean

- if we want to assess observation's role in science, we need to be clear on what we mean
 - EO is necessary for all empirical research

- if we want to assess observation's role in science, we need to be clear on what we mean
 - EO is necessary for all empirical research
 - TO involved in all successful empirical research

- if we want to assess observation's role in science, we need to be clear on what we mean
 - EO is necessary for all empirical research
 - TO involved in all successful empirical research
 - FO contrasts with, but can be intrinsically epistemically superior to experimentation (Hawthorne, exclusion)

- if we want to assess observation's role in science, we need to be clear on what we mean
 - EO is necessary for all empirical research
 - TO involved in all successful empirical research
 - FO contrasts with, but can be intrinsically epistemically superior to experimentation (Hawthorne, exclusion)
 - both are complementary sources of information that should be used in concert whenever possible

- if we want to assess observation's role in science, we need to be clear on what we mean
 - EO is necessary for all empirical research
 - TO involved in all successful empirical research
 - FO contrasts with, but can be intrinsically epistemically superior to experimentation (Hawthorne, exclusion)
 - both are complementary sources of information that should be used in concert whenever possible
- · more work needs to be done!

Thanks

References

- Averitt, A. J., Weng, C., Ryan, P., and Perotte, A. (2020). Translating evidence into practice: eligibility criteria fail to eliminate clinically significant differences between real-world and study populations. *NPJ digital medicine*, 3(1):67.
- Bird, A. (2018). Evidence and inference. *Philosophy and Phenomenological Research*, 96(2):299–317.
- Bird, A. (2022). *Knowing Science*. Oxford, New York: Oxford University Press.
- Bogen, J. and Woodward, J. (1988). Saving the phenomena. *The Philosophical Review*, XCVII(3):303–352.
- Boyd, N. M. and Matthiessen, D. (2023). Observations, experiments, and arguments for epistemic superiority in scientific methodology. *Philosophy of Science*. https://doi.org/10.1017/psa.2023.101.

- Craver, C. and Dan-Cohen, T. (2021). Experimental artefacts. *The British Journal for the Philosophy of Science*. https://doi.org/10.1086/715202.
- Currie, A. and Levy, A. (2019). Why experiments matter. *Inquiry*, 62(9-10):1066–1090.
- Delfino, M. (2020). Distributed computing. In Fabjan, C. W. and Schopper, H., editors, *Particle Physics Reference Library, Volume 2*, pages 613–644. Cham: Springer.
- Feest, U. (2022). Data quality, experimental artifacts, and the reactivity of the psychological subject matter. *European Journal for Philosophy of Science*, 12:13. https://doi.org/10.1007/s13194-021-00443-9.
- Fodor, J. (1984). Observation reconsidered. *Philosophy of science*, 51(1):23–43.

- Geiger, H. and Marsden, E. (1913). The laws of deflexion of α particles through large angles. *Philosophical Magazine*, 25(148):604–23.
- Leonelli, S. (2015). What counts as scientific data? a relational framework. *Philosophy of Science*, 82(5):810–821.
- Mättig, P. (2021). Trustworthy simulations and their epistemic hierarchy. *Synthese*, 199(5-6):14427–14458.
- McCambridge, J., Witton, J., and Elbourne, D. R. (2014). Systematic review of the hawthorne effect: new concepts are needed to study research participation effects. *Journal of clinical epidemiology*, 67(3):267–277.
- Michelson, A. A. and Morley, E. W. (1887). On the relative motion of the earth and the luminiferous ether. *American Journal of Science*, 34:333–345.

- Morgan, M. S. (2013). Nature's experiments and natural experiments in the social sciences. *Philosophy of the Social Sciences*, 43(3):341–357.
- Okasha, S. (2011). Experiment, observation and the confirmation of laws. *Analysis*, 71(2):222–232.
- Perović, S. (2021). Observation, experiment, and scientific practice. *International Studies in the Philosophy of Science*, 34(1):1–20.
- Roethlisberger, F. J. and Dickson, W. (1939). *Management and the Worker*. Cambridge, MA: Harvard University Press.
- Shapere, D. (1982). The concept of observation in science and philosophy. *Philosophy of science*, 49(4):485–525.
- van Fraassen, B. C. (1980). *The Scientific Image*. Oxford: Clarendon Press.

- Weber, M. (2004). *Philosophy of Experimental Biology*. Cambridge Studies in Philosophy and Biology. Cambridge University Press.
- Wickström, G. and Bendix, T. (2000). The "Hawthorne effect"—what did the original Hawthorne studies actually show? *Scandinavian Journal of Work, Environment & Health*, pages 363–367.
- Woodward, J. (2003a). Experimentation, causal inference, and instrumental realism. In Radder, H., editor, *The Philosophy of Scientific Experimentation*. University of Pittsburgh Press.
- Woodward, J. (2003b). Making Things Happen: A Theory of Causal Explanation. New York: Oxford University Press.