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Broad aim of this talk:

Philosophical appraisal of Monte Carlo
(MC) simulations and techniques

Focus: data analysis in cosmology and
astrophysics



Overview

1. Why visit Monte Carlo?

Philosophical discussions about MC simulations

2. What’s up in Monte Carlo?
Examples of MC methods

3. How large is Monte Carlo?
A classification of MC methods

4. What's so special about Monte Carlo?

MC simulations as simulations

5. What do to do with Monte Carlo?

Functions of MC simulations
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1. Why visit Monte Carlo?

Travel guides so far>>>

1. In physics etc., MC methods are widely used.

2. Not much literature in philosophy of science
discusses MC as such (exception: Falkenburg

2024).

3. In the early literature, MC simulations are

often used as (prime) examples:
Rohrlich (1990), Humphreys (1994), Galison (1996/1997), Hughes (1999)



Why visit Monte Carlo?

4. Later, some authors deny that MC simulations
are really simulations.

Grine-Yanoff & Weirich (2010, p. 30)

“Thus, the Monte Carlo approach does not have a
mimetic purpose: It imitates the deterministic system
not in order to serve as a surrogate that is investigated in
its stead but only in order to offer an alternative
computation of the deterministic system’s properties.
[...] This contrasts with other uses of simulation
discussed so far.”

Cf. Hartmann (1996, pp. 8-9), Winsberg (2010, p. 59)



Why visit Monte Carlo?

Conseqguence:

We need a philosophical account of MC methods
and simulations!

- Classification

- Functions



2. What's up in Monte Carlo?
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S. Ulam (1991, p. 197):

“l[a neutron] can scatter at one angle, change its velocity, be
absorbed, or produce more neutrons by a fission of the target
nucleus, and so on. The elementary probabilities for each of these
possibilities are individually known, to some extent [...]. But the
problem is to know what a branching of hundreds of thousands or
millions will do. One can write down differential equations or
integral differential equations for the “expected values”, but to
solve them [...] is an entirely different matter.”



Historical sites Adventures
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S. Ulam (1991, p. 197 ct.d):

“The idea was to try thousands of such possibilities and, at each
stage, to select by chance, by a “random number” with suitable
probability, the fate or kind of event, to follow it in a line, so to
speak, instead of considering all branches. After examining the
histories of only a few thousand, one will have a good sample and
an approximate answer to the problem.”
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Monte Carlo today SOPHIA (Simulations Of Photo Hadronic Interactions in

Astrophysics)
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Monte Carlo today
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ABSTRACT

We present results from Monte Carlo simulations describing the radiative transfer of Ha line emission,
produced both by H 1 regions in the disk and in the diffuse ionized gas (DIG), through the dust layer of the galaxy
NGC 891. This allows us to calculate the amount of light originating in the H 1 regions of the disk and scattered
by dust at high z and compare it with the emission produced by recombinations in the DIG. The cuts of
photometric and polarimetric maps along the z-axis show that scattered light from H n regions is still 109 of that
of the DIG at z ~ 600 pc whereas the degree of linear polarization is small (<1%). The importance of these
results for the determination of intrinsic emission-line ratios is emphasized, and the significance and possible
implications of dust at high z are discussed.

Subject headings: dust, extinction — ISM: abundances — galaxies: spiral — polarization — radiative transfer —
scaltering
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A Monte Carlo model of galaxy structure
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Seiden & Schulman (1986, Fig. 4)



Monte Carlo today

Cosmological p:
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joint analysis of resu
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Classical and Quantum
Gravity

Bayesian methods for cosmological parameter
estimation from cosmic microwave background
measurements

To cite this article: Nelson Christensen et al 2001 Class. Quantum Grav. 18 2677

View the article online for updates and enhancements.

accuracy correction of results generated ﬁom an appr0x1mate method We also dlscuss the dlfferent ways of
converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and
consistency, and describe the use of analytic marginalization over normalization parameters.

DOI: 10.1103/PhysRevD.66.103511 PACS number(s): 98.80.Es, 02.70.Uu, 14.60.Pq




Metropolis-Hastings: MCMC

Goal: calculate moments of a probability distribution p
~ f(x) by sampling points from p.
Normalization need not be known.
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In Bayesian analysis

Calculate (marginalized) posterior probability

p(O|data)
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3. How large is Monte Carlo?

Image: User NordNordWest (CC BY-SA 3.0 de)
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Stochastic dynamics

Image: T. J. Sullivan, en.wikipedia.org
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The basic idea

Values of empirical characteristics at times i
— values of random variables X,

X1 Xy X3! Xy Xs' sample
Xy? Xy* X;* X" X’ trajectories
EIXJ | estimate expecta- (direct)

tion value etc.  \onte Carlo Simulation
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Mathematical description

A generalization

Stochastic process: Family of random
variables X;

— Use random numbers to evaluate
features (expectation wvalues, ...) of
stochastic processes.

Name: Stochastic simulation
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Mathematical description

E[f1~ - Bl f(x)

x; Random numbers



How large is Monte Carlo?

Another generalization:
1
ELf1~ ~ 2, f (%)

f, f)dx=(b=a)E, [ 1~ ==X, f(x)

Monte Carlo integration

x; Random numbers



How large is Monte Carlo?

Another aspect:

E[f] = Z =1 (X)) f (%)

fbf(x)P(X)dx: (b-a)E, [f] =~
PavN | F(x)

Monte Carlo sampling

x; Random numbers _,



How large is Monte Carlo?

Further generalization:
MC methods:

Methods that use random or pseudo-

random numbers.
James (1980, p. 1147)

NB. The (pseudo-)random numbers are often defined
using a probabilistic description.
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How large is Monte Carlo?

Classification>>>

MC methods

T

MC integration

— &2

MC simulations

Narrow sense
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4. What’s so special about Monte Carlo?

How does MC simulation qua stochastic
simulation work?

Compare to deterministic computer simulations.

26



Analyzing MC simulations

computer

‘ Computer states display numerical
values of solution to model equations

mathematical model

‘ model states trace values of
empirical characteristics

target

Cf. Barberousse et al. (2009), Burks (1975), Zeigler (1976),
Norton & Suppe (2001)
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Analyzing MC simulations

computer

11

10

model

II

10

target
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Analyzing MC simulations

computer
| | Allows for surrogative reasoning
3 |[ 4

target



Analyzing MC simulations

The story matches well-known definitions of
computer simulations:

a. Hartmann (1996, Sec. 2.2): ,a simulation imitates
one process by another process”.

b. Humphreys (2004, p. 110): Core simulation provide
solutions to computational models.

But: determism presumed!

30



Analyzing MC simulations

What is different with MC simulations?
Issue 1>>> Order of computational states

1 1 1 1 1
X, X, X3 X, Xc

2 2 2 2 2
X, X, X; X, Xs

Commonly, one sample trajectory is simulated after the

other.
But only averages over sample trajectories characterize

the solution.
31



Analyzing MC simulations

computer

B |

mathematical model

LB |

target
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Analyzing MC simulations

1 4 J 1 1 J 1
er

comput

VZzZH

mathematical model

LB |

target
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Analyzing MC simulations

Consequences:

Winsberg (2010, p. 59):

Possible argument: If you stop an MC simulation at some
time, then this time has no determinate counterpart in
the process that is simulated. Thus, an MC simulation
does not represent a process in the target and is not a
real simulation.

This argument fits well with Hartmann’s view of
simulations.

34



Analyzing MC simulations

Under the definition by Humphreys (2004, p. 110),
MC simulations are simulations.

Thus, the definitions part company at this point.

>>>Which definition should we prefer?

35



Analyzing MC simulations

The argument from epistemological irrelevance:

1
X1 Xz-----
1 1 1 1
X, X3 X, X<

2 1
X1 Xyl Xq
2 2 2 2 2
X, X, X3 X, Xs

No epistemological difference!

The order of computational states cannot be a problem

for the classification. N



Caveat

But there are other differences.

Issue 2: MC simulations output probabilities and
expectation values rather than values of empirical
characteristics.

Deterministic simulations:

f; — empirical characteristics

Monte Carlo simulations:

x; — probabilities ( empirical characteristics )
37



Caveat

Questions>>>

a. How can probabilities be used to describe a
target?

b. How can we understand the way the
probabilities are produced?

38



A moot point

Are MC integrations and indirect MC simulations
also computer simulations?

- Buffon’s needle experiment
- A time series producing the distribution

But not essential for function of experiments.

39



5. What to do with MC?

Functions

Falkenburg (2024) stresses:

- Complex dynamics: infer consequences from
models

- Instrumental use: contribute to analysis of
experiments (in particular error analysis, today
often synthetic data for training ML tools).

40



What to do with MC?

Cosmology:

- No experiments proper (but see Boge’s talk)

- But some simulations conceptually very close
to MC simulations of particle processes.

- Error estimation an important issue in
astrophysics, MC methods important here.

- The Seiden-Schulman model has different
functions: toy model, unification with
statistical physics

41



Conclusions

Supershort travel guide

- MC methods are underexplored.

- MC methods perform many functions.

- Some MC methods are stochastic simulations.
They differ from deterministic ones in
interesting ways. Still, there is a case to treat
them analogously with other simulations.

- Other MC methods can be illustrated as
simulations, but this illustration doesn’t have
epistemic value.

42
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