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Monte Carlo …

… is popular.
Images: B. Nyman (CC BY 2.0), R. Dahlke (spiral galaxy), datascience.eu
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Broad aim of this talk:

Philosophical appraisal of Monte Carlo 
(MC) simulations and techniques

Focus: data analysis in cosmology and 
astrophysics
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1. Why visit Monte Carlo?
Philosophical discussions about MC simulations

2. What’s up in Monte Carlo?
Examples of MC methods

3. How large is Monte Carlo?
A classification of MC methods

4. What’s so special about Monte Carlo?
MC simulations as simulations

5. What do to do with Monte Carlo?
Functions of MC simulations

Overview
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Travel guides so far>>>

1. In physics etc., MC methods are widely used.

2. Not much literature in philosophy of science
discusses MC as such (exception: Falkenburg
2024).

3. In the early literature, MC simulations are
often used as (prime) examples:
- Rohrlich (1990), Humphreys (1994), Galison (1996/1997), Hughes (1999)

1. Why visit Monte Carlo?
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4. Later, some authors deny that MC simulations
are really simulations.

Grüne-Yanoff & Weirich (2010, p. 30)
“Thus, the Monte Carlo approach does not have a
mimetic purpose: It imitates the deterministic system
not in order to serve as a surrogate that is investigated in
its stead but only in order to offer an alternative
computation of the deterministic system’s properties.
[…] This contrasts with other uses of simulation
discussed so far.”

Cf. Hartmann (1996, pp. 8-9), Winsberg (2010, p. 59)

Why visit Monte Carlo?
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Consequence:

We need a philosophical account of MC methods
and simulations!

- Classification
- Functions

Why visit Monte Carlo?
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Images: B. Nyman (CC BY 2.0), R. Dahlke (spiral galaxy), datascience.eu
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2. What‘s up in Monte Carlo?

https://commons.wikimedia.org/wiki/File:D8E_1340_(8526430226).jpg?uselang=de
https://creativecommons.org/licenses/by/2.0
https://datascience.eu/fr/mathematiques-et-statistiques/definition-de-la-simulation-de-monte-carlo/


The basic idea

S. Ulam (1991, p. 197):

“[a neutron] can scatter at one angle, change its velocity, be
absorbed, or produce more neutrons by a fission of the target
nucleus, and so on. The elementary probabilities for each of these
possibilities are individually known, to some extent […]. But the
problem is to know what a branching of hundreds of thousands or
millions will do. One can write down differential equations or
integral differential equations for the “expected values”, but to
solve them […] is an entirely different matter.”

Historical sites
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S. Ulam (1991, p. 197 ct.‘d):

“The idea was to try thousands of such possibilities and, at each
stage, to select by chance, by a “random number” with suitable
probability, the fate or kind of event, to follow it in a line, so to
speak, instead of considering all branches. After examining the
histories of only a few thousand, one will have a good sample and
an approximate answer to the problem.”

Historical sites
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Monte Carlo today
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SOPHIA (Simulations Of Photo Hadronic Interactions in 
Astrophysics)



Monte Carlo today
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A Monte Carlo model of galaxy structure

13
Seiden & Schulman (1986, Fig. 4)



Monte Carlo today
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Metropolis-Hastings: MCMC
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Goal: calculate moments of a probability distribution p 
~ 𝑓(𝑥) by sampling points from p.
Normalization need not be known.  



In Bayesian analysis
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Calculate (marginalized) posterior probability

𝑝 𝜃|𝑑𝑎𝑡𝑎

Lewis & Bridle (2002)



3. How large is Monte Carlo? 

17Image: User NordNordWest (CC BY-SA 3.0 de)

https://commons.wikimedia.org/wiki/File:Monte-Carlo_in_Monaco_2025.svg
https://creativecommons.org/licenses/by-sa/3.0/de/deed.en


Stochastic dynamics

Image: T. J. Sullivan,  en.wikipedia.org
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The basic idea
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… … … … …

sample 
trajectories

Values of empirical characteristics at times i
→ values of random variables Xi

E[X1] estimate expecta-
tion value etc.

(direct)
Monte Carlo Simulation
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A generalization

Stochastic process: Family of random
variables 𝑋𝑖

 Use random numbers to evaluate
features (expectation values, ….) of
stochastic processes.

Name: Stochastic simulation

Mathematical description
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E[ f ] ≈
1

𝑁
σ𝑖=1
𝑁 𝑓(𝑥𝑖)

Mathematical description

𝑥𝑖 Random numbers
21



Another generalization:

E[ f ] ≈
1

𝑁
σ𝑖=1
𝑁 𝑓(𝑥𝑖)

𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥= (b – a)EP [ f ] ≈

𝑏−𝑎

𝑁
σ𝑖=1
𝑁 𝑓(𝑥𝑖)

Monte Carlo integration

How large is Monte Carlo?

𝑥𝑖 Random numbers
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Another aspect:

E[ f ] ≈
1

𝑁
σ𝑖=1
𝑁 𝑝(𝑥𝑖)𝑓(𝑥𝑖)

𝑎׬
𝑏
𝑓 𝑥 𝑝(𝑥)𝑑𝑥= (b – a)EP [ f ] ≈

𝑏−𝑎

𝑁
σ𝑖=1
𝑁 𝑓(𝑥𝑖)

Monte Carlo sampling

How large is Monte Carlo?

𝑥𝑖 Random numbers
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Further generalization:

MC methods:

Methods that use random or pseudo-
random numbers.

James (1980, p. 1147)

NB. The (pseudo-)random numbers are often defined
using a probabilistic description.

How large is Monte Carlo?
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…               MC simulations

How large is Monte Carlo?

Classification>>>

MC methods

…                      MC integration
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Narrow sense



4. What’s so special about Monte Carlo?

How does MC simulation qua stochastic
simulation work?

Compare to deterministic computer simulations.
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Analyzing MC simulations

target
Cf. Barberousse et al. (2009), Burks (1975), Zeigler (1976), 
Norton & Suppe (2001)

mathematical model

computer

Computer states display numerical
values of solution to model equations

model states trace values of
empirical characteristics
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Analyzing MC simulations

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

target

model

computer
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Analyzing MC simulations

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

target

computer

Allows for surrogative reasoning
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Analyzing MC simulations

The story matches well-known definitions of
computer simulations:

a. Hartmann (1996, Sec. 2.2): „a simulation imitates
one process by another process”.

b. Humphreys (2004, p. 110): Core simulation provide
solutions to computational models.

But: determism presumed!
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What is different with MC simulations? 
Issue 1>>> Order of computational states

Analyzing MC simulations

X1 X2 X3 X4 X5
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2 x5
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… … … … …

Commonly, one sample trajectory is simulated after the
other.
But only averages over sample trajectories characterize
the solution.
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Analyzing MC simulations

target

mathematical model

computer
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Analyzing MC simulations

target

mathematical model

computer
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Consequences:

Analyzing MC simulations

Winsberg (2010, p. 59):
Possible argument: If you stop an MC simulation at some
time, then this time has no determinate counterpart in
the process that is simulated. Thus, an MC simulation
does not represent a process in the target and is not a
real simulation.

This argument fits well with Hartmann’s view of
simulations.
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Under the definition by Humphreys (2004, p. 110),  
MC simulations are simulations.

Thus, the definitions part company at this point. 

>>>Which definition should we prefer?

Analyzing MC simulations
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The argument from epistemological irrelevance:

Analyzing MC simulations

X1 X2 X3 X4 X5
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… … … … …

No epistemological difference!

The order of computational states cannot be a problem
for the classification.

36



Caveat

But there are other differences.
Issue 2: MC simulations output probabilities and
expectation values rather than values of empirical
characteristics.

Deterministic simulations:

𝑓𝑖 → empirical characteristics

Monte Carlo simulations:

𝑥𝑖 → probabilities ( empirical characteristics )
37



Questions>>>

a. How can probabilities be used to describe a
target?

b. How can we understand the way the
probabilities are produced?

Caveat
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Are MC integrations and indirect MC simulations 
also computer simulations?

- Buffon’s needle experiment
- A time series producing the distribution

But not essential for function of experiments.

A moot point
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Functions

Falkenburg (2024) stresses:
- Complex dynamics: infer consequences from

models
- Instrumental use: contribute to analysis of

experiments (in particular error analysis, today
often synthetic data for training ML tools).

5. What to do with MC?
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Cosmology:

- No experiments proper (but see Boge’s talk)
- But some simulations conceptually very close

to MC simulations of particle processes.
- Error estimation an important issue in

astrophysics, MC methods important here.
- The Seiden-Schulman model has different

functions: toy model, unification with
statistical physics

What to do with MC?
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Supershort travel guide

- MC methods are underexplored.
- MC methods perform many functions.
- Some MC methods are stochastic simulations.

They differ from deterministic ones in
interesting ways. Still, there is a case to treat
them analogously with other simulations.

- Other MC methods can be illustrated as
simulations, but this illustration doesn’t have
epistemic value.

Conclusions
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