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A Causal Learning View on the Inverse Problem
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A Causal Learning View on the Inverse Problem

relevant measured
quantities quantities
(e.g., gamma energy) (e.g., Cherenkov light)

@ P(X |Y) @

P(Y) P(X |Y)-P(Y)

» Goal: estimate P(Y) fromP(X)=P(X |Y) -P(Y)
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A Causal Learning View on the Inverse Problem

relevant measured
data source: MC or quantities quantities
object under Study (e.g., gamma energy) (e.g., Cherenkov light)

® O———®

D € {dymc,d1,dz,. .. }

» Goal: estimate what?
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A Causal Learning View on the Inverse Problem

relevant measured
data source: MC or quantities quantities
object under Study (e.g., gamma energy) (e.g., Cherenkov light)
(») ) ——®
DG{nd,dth,...} P(YlDZdi) ]P’(X|Y)~]P’(Y|D:di)

» Goal: estimate P(Y | D =d;) fromP(X | D =d;)
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A Causal Learning View on the Inverse Problem

relevant
quantities

(e.g., gamma energy)

measured
quantities
(e.g., Cherenkov light)

® O———®

D € {duc,d1,d2,...} P(Y | D = d;)

data source: MC or
object under study

B(X | Y)-B(Y | D =dy)

» Goal: estimate P(Y | D =d;) fromP(X | D =d;)

- d; induce different distributions P(Y | D = d;)
- d; induce different measurements P(X | D = d;)
— use MC data from P(X,Y | D = duc)

» Key assumption: P(X |Y) is stable across domains
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A Causal Learning View on the Inverse Problem

relevant measured
data source: MC or quantities quantities
object under Study (e.g., gamma energy) (e.g., Cherenkov light)

(standard ML
estimate)

@ @ P(X | ) @ @(Y'){)ﬂ——ﬂ:?j}#Y

D € {dyc,di,da,...}  P(Y|D=d) P(X |Y)-P(Y | D =d)

» Goal: estimate P(Y | D =d;) fromP(X | D =d;)

- d; induce different distributions P(Y | D = d;)
- d; induce different measurements P(X | D = d;)
— use MC data from P(X,Y | D = duc)

» Key assumption: P(X |Y) is stable across domains

» Standard machine learning falsely assumes P(Y | D = d;) to be stable, too.

P(Y |Y) -P(Y | D =d;)
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A Causal Learning View on the Inverse Problem

data source: MC or
object under study

relevant
quantities

(e.g., gamma energy)

P(X|Y)

measured
quantities
(e.g., Cherenkov light)

®

D e {nd,d1,d2,..

3

®

P(Y | D = dy)

B(X | Y)-B(Y | D =dy)

» Goal: estimate P(Y | D =d;) fromP(X | D =d;)

- d; induce different distributions P(Y | D = d;)
- d; induce different measurements P(X | D = d;)
— use MC data from P(X,Y | D = duc)

» Key assumption: P(X |Y) is stable across domains

(standard ML
estimate)

LAY

P(Y |Y) -P(Y | D =d;)

» Standard machine learning falsely assumes P(Y | D = d;) to be stable, too.

» Solution: proper modeling of the measurement process & no false assumptions — Fredholm equation
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Inverse Problems: the Reconstruction of Spectra '
.P

Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement g(x). 0-10 ] —— MAGIC, JHEAP 2015
<+ Unfolding
g(z) = /M(r ly)- p(y) dy 5
~—~ ——— g 10-11 4
measurement transfer  target o
é 10712 E
—
a
= 10713 4
1071 T T
10° 10*
E / GeV

2 Fig.: Morik and Rhode, Machine Learning under Resource Constraints — Discovery in Physics, 2023
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Inverse Problems: the Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some
quantity y from a measurement ¢(z).

q(x) = /M(r | y)- p(y) dy
~—~ ———
measurement transfer  target

Approach: set up a system of linear equations

= BT 2pen @)
Mi = ‘Sl‘ ZIED»L ¢(I)

q=Mp where

2 Fig.: Morik and Rhode, Machine Learning under Resource Constraints — Discovery in Physics, 2023
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measurement transfer  target

Approach: set up a system of linear equations

= BT 2pen @)
M; = ﬁ ZzeDi #(x)

and solve it by minimizing some loss, i.e.,

q=Mp where

p = argmin £(p; q,M)
pPEA
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Inverse Problems: the Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some
quantity y from a measurement ¢(z).
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measurement transfer  target

Approach: set up a system of linear equations
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Inverse Problems Everywhere: Count + Predict
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Inverse Problems Everywhere:
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Cognitive Interests of Different Fields
@

Physics: physical implications of the result p N
» accurate observation of particle sources N RN n ?JIA((;II(}JHEAP 2015
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» validation of theories about: =
— particle acceleration S o™
— dark matter >
—_ % |07IZ<
» key assumption: p =~ p* E
= 1071
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p = argmin{ (p; q, M)
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M; = |D71i\ ZzeDi o(x)
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Cognitive Interests of Different Fields

Physics: physical implications of the result p

» accurate observation of particle sources
» validation of theories about:

— particle acceleration
— dark matter

» key assumption: p =~ p*

Computer Science / ML: implications of the choice
of ¢ and £ on p — p*

statistical consistency

convergence

robustness and data quality

v v Vv Vv

key assumption: MC data is sufficiently informative
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Addressing the
Central Questions of
This Workshop



What Can Be Measured? / Consequences of Ill-Posedness

4
Most methods?® are both Fisher-consistent* and asymptotically consistent.® <

3 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
4 Tasche, “Fisher consistency for prior probability shift”, 2017.
5 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023.
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What Can Be Measured? / Consequences of Ill-Posedness

4
Most methods?® are both Fisher-consistent* and asymptotically consistent.® <

quality improves
with data volume

3 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
4 Tasche, “Fisher consistency for prior probability shift”, 2017.
5 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023.
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What Can Be Measured? / Consequences of Ill-Posedness

Most methods?® are both Fisher-consistent* and asymptotically consistent.®

(perfect
quality improves errors can measurement
with data volume be estimated if data was

infinite)

Key Assumption: P(X |Y) is stable = no data-MC mismatch besides the spectrum

3 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
4 Tasche, “Fisher consistency for prior probability shift”, 2017.

5 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023.
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What Can Be Measured? / Consequences of Ill-Posedness

Fig: Perfect unfolding; no data-MC mismatches & abundant data.
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# Events

What Can Be Measured? / Consequences of Ill-Posedness ‘

pLg

Fig: Unfolding with different data-MC mismatches.
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What Can Be Measured? / Consequences of Ill-Posedness

# Events

Fig: Unfolding with little measured data.
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What Can Be Measured? / Consequences of Ill-Posedness

Fig: Unfolding with little MC data.

10° —_ — truth
= = unfolding
)
[=4
[ ——
& 104 4
H#
e e e
1
10° 1 | SEEE 1
O bl
1.0 4 ——
0.9 4 ]

10° :a:
Energy / GeV (toy data; tau=0.0001, frac_tst=1.{, frac_trn=0.01)

Mirko Bunse

A Machine Learning Perspective on the Inverse Problem



What Can Be Measured? / Consequences of Ill-Posedness

Measurement is working at least as long as
the simulation is perfect and data abundant.
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What Can Be Measured? / Consequences of Ill-Posedness

Measurement is working at least as long as
the simulation is perfect and data abundant.

Open issue: treating mismatches through systematics
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To What Extent is the Measurement Theory-Laden?

Regularization: introduces preference towards certain properties of the spectrum

» needed for maximum accuracy
» sacrifices sensitivity to deviations from these properties

» impact can be controlled by setting a scalar parameter value
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To What Extent is the Measurement Theory-Laden?

Regularization: introduces preference towards certain properties of the spectrum

» needed for maximum accuracy
» sacrifices sensitivity to deviations from these properties

» impact can be controlled by setting a scalar parameter value

Example: Tikhonov regularization linearizes p (Question 4: assumptions about p*)

» increases smoothness of measurements

» reduces sensitivity to bumps and kinks
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# Events

To What Extent is the Measurement Theory-Laden? '}
‘P

Fig: Unfolding with little measured data, revisited with less regularization.
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# Events

To What Extent is the Measurement Theory-Laden?

Fig: Unfolding with little MC data, revisited with less regularization.
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To What Extent is the Measurement Theory-Laden? '

Fig: “Perfect unfolding” from before, but entirely without regularization.
105 4 —— truth
== unfolding
8
c
dJ
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# 10%
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T .
o What Extent is the Measurement Theory-Laden?

ses only a “weak theory”

Regularization impo
ust be carefully balanced.

(smoothness) and m
» by the analyst
, or automatically

Mirko Bunse
A Machine Learning Perspective on the Inverse Problem
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The Role of the Background

Removal of background: before unfolding, using binary classification.
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The Role of the Background

Removal of background: before unfolding, using binary classification.

Balance between purity and sensitivity?

» with background, the model becomes @' =q+b=Mp+b

» hence, b has to be removed from both sides
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The Role of the Background

Removal of background: before unfolding, using binary classification.

Balance between purity and sensitivity?

with background, the model becomes g’ =q+b=Mp+b
hence, b has to be removed from both sides

4
>
» purity & sensitivity do not affect the unfolding
>

potential difficulty (again): data-MC mismatches

Background does not impose additional difficulties
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Recap: Cognitive Interests of Different Fields

b 4g

Physics: physical implications of the result p

W
» accurate observation of particle sources 6;@ ERN - IS‘;GIQC JHEAP 2015
C nfolding
» validation of theories about: -
Z e
- particle acceleration S "
- dark matter -
- g 10712 4
» key assumption: p =~ p* 2
= 107
Ps
Computer Science / ML: implications of the choice 104 - ~
107 10
of ¢ and £ on p — p* E/ GV
» statistical consistency . .
p = argmin/(p; q, M)
» convergence peA
» robustness and data quality q= ﬁ ZzeB #(2)
» key assumption: MC data is sufficiently informative R
Y p \ M; = 7] ZzeDi (z)
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Conclusion: ML Perspective on the Inverse Problem

4
What can be measured? / Consequences of ill-posedness: <

» measurement is working, as long as the simulation is perfect

» open issue: treatment of mismatches through systematics
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Conclusion: ML Perspective on the Inverse Problem

What can be measured? / Consequences of ill-posedness:

» measurement is working, as long as the simulation is perfect

» open issue: treatment of mismatches through systematics

To what extend is the measurement theory-laden?

» careful balance is necessary (by user & by algorithms)
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Conclusion: ML Perspective on the Inverse Problem

What can be measured? / Consequences of ill-posedness:

» measurement is working, as long as the simulation is perfect

» open issue: treatment of mismatches through systematics

To what extend is the measurement theory-laden?

» careful balance is necessary (by user & by algorithms)

The role of the background:

» no additional difficulties

Central epistemological problems: MC quality & data volume

Mirko Bunse A Machine Learning Perspective on the Inverse Problem 19



Backup Slides:
5 Learnings From
Quantification Research



15t Learning: Statistical Consistency

4
Definition (Fisher Consistency for Prior Probability Shift): <

If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),
it would return the true class prevalences:

P(QX)) =QY) YQ:QX|Y)=PFX]|Y)
——

population for any Q with PPS
analogue
of h(B)

6 Blobel, “An unfolding method for high energy physics experiments”, 2002, .
7 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
8 Govert, “Fisher-Konsistenz fur Quantification-Algorithmen”, 2023.
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15t Learning: Statistical Consistency

4
Definition (Fisher Consistency for Prior Probability Shift): <
If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),
it would return the true class prevalences:

P(QX)) =QY) YQ:QX|Y)=PFX]|Y)
——

population for any Q with PPS
analogue
of h(B)

» can also be defined for other types of data set shift
» not a sufficient but certainly a necessary criterion for quantifier selection

1) RUN® / TRUEE (and others) are Fisher consistent’
2) DSEA & DSEA+ are not Fisher consistent® X

6 Blobel, “An unfolding method for high energy physics experiments”, 2002, .
7 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
8 Govert, “Fisher-Konsistenz fur Quantification-Algorithmen”, 2023.
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2"d earning: The Anatomy of Prediction Errors

4
Prediction Error Bound:® describes the impact of and the interplay between causes of errors. <

Hh(B)— < 2k(2 4+ 4/21log 2 2k(2+ /2log 75) ) (H || 1 N 1 )
2 - v/ A2 Pun 2\ /D /Bl
N——— _,_/ —— —— ——
prediction error representation ¢ shift volume D volume B
where
» h(B) is the solution of q = Mp
» k isaconstantst. |[¢(z)]2 <k VzeX
» )2 is the second-smallest eigenvalue of some particular G
» ¢ is the desired probability

9 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023, .
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3" Learning: Improved Optimization Techniques

Algorithm Estimate Validity 4’}
RUNS® p = argmin {(p; q,M) invalid: pg A X
p € R®

0 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
n Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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3" Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUNS® p = argmin {(p; q,M) invalid: pg A X
p € R®

TRUEE™ p = argmin £(p; q,M) invalid: pg¢ A X
p=>0

0 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
n Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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3" Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUNS® p = argmin {(p; q,M) invalid: pg A X
p € R®

TRUEE™ p = argmin £(p; q,M) invalid: pg¢ A X
p=>0

Constrained™ p = argmin £(p; q, M) valid
peEA

Soft-Max*t p= o), I" =argmin ¢(o(l); q,M) valid

1e RC-1

0 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.

n Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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4th Learning: Methods Are Numerous '

Most methods are combinations of ’

» a data representation ¢: X —» Z
» aloss function £: Zx Z - R
» an optimization algorithm

These components can be recombined to even more methods.

12 Forman, “Quantifying counts and costs via classification”, 2008, .

3 Bella et al., “Quantification via Probability Estimators”, 2010, .

“ Gonzalez-Castro, Alaiz-Rodriguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .

5 Bérner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .
16

Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,
2016, .

Mirko Bunse A Machine Learning Perspective on the Inverse Problem 24



4th Learning: Methods Are Numerous

b 4g

Most methods are combinations of

» a data representation ¢: X —» Z
» aloss function £: Zx Z =R

i .
g thub.com/mlrkobunse/qUnfow
» an optimization algorithm

These components can be recombined to even more methods.

Representations: hard' & soft™ classification, histograms'*, tree-based binnings'®, kernel means’®, ...
Loss Functions: least squares’?'3, Hellinger distance', energy distance'®, Poisson likelihood®, ...
How to Choose? axiomatic approach required but up to you (consistency, simplicity, transparency, ...?)

12
13
14
15
16

Forman, “Quantifying counts and costs via classification”, 2008, .

Bella et al., “Quantification via Probability Estimators”, 2010, .

Gonzalez-Castro, Alaiz-Rodriguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .

Borner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .

Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,
2016, .
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5t Learning: Open Issues in Quantification Research

Complications of Experimental Physics:

» ordinality: y; <yi+1 Vi €Y (to be covered through regularization for ordinal plausibility

7 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.

17)
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Complications of Experimental Physics:
» ordinality: y; <yi+1 Vi €Y (to be covered through regularization for ordinal plausibility

» background: Q(x) = Q(x,92) + Zyc:1 Q(x,y) (PPS with a noise class®)

17)

» acceptance / class-conditional selection bias: Q(x € B |y;) # Q(x€B|y;) Fi#J

7 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Complications of Experimental Physics:
» ordinality: y; <yiy1 Vi €Y (to be covered through regularization for ordinal plausibility’)
» background: Q(x) = Q(x,9) + 23:1 Q(x,y) (PPS with a noise class®)
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» changing environment: Q(x,y) = Zees Q(x,y,e)
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5t Learning: Open Issues in Quantification Research
Complications of Experimental Physics:

» ordinality: y; <yiy1 Vi €Y (to be covered through regularization for ordinal plausibility’)
» background: Q(x) = Q(x,92) + 23:1 Q(x,y) (PPS with a noise class®)

» acceptance / class-conditional selection bias: Q(x € B |y;) # Q(x €B|y;) 3i#j
» changing environment: Q(x,y) = Zees Q(x,y,e)

» data-MC mismatches / concept shift: Q(x | y) # P(x|y) (in addition to PPS)

» inspect contributions of individual data items x € B to h(B) (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

7 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Conclusion: 5 Learnings From Quantification

b 4g

Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes
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Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:

3) Contraints must be implemented, either explicitly or via soft-max
4) Many methods—or aspects thereof—have a potential for improving physics analyses

5) Physics applications motivate further developments in quantification research

b 4g
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