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A Causal Learning View on the Inverse Problem

Y

relevant

quantities

(e.g., gamma energy)

X

measured

quantities

(e.g., Cherenkov light)

P(X | Y )

P(Y ) P(X | Y ) · P(Y )

D

data source: MC or

object under study

D ∈ {dMC, d1, d2, . . . } P(Y | D = di) P(X | Y ) · P(Y | D = di)

Ŷ 6= Y

(standard ML

estimate)

P̂(Y | X)

P(Ŷ | Y ) · P(Y | D = di)

Goal: estimate

– di induce different distributions P(Y | D = di)
– di induce different measurements P(X | D = di)
– use MC data from P(X, Y | D = dMC)

Key assumption: P(X | Y ) is stable across domains

Standard machine learning falsely assumes P(Y | D = di) to be stable, too.

Solution: proper modeling of the measurement process & no false assumptions → Fredholm equation
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Ŷ 6= Y

(standard ML

estimate)

P̂(Y | X)
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Inverse Problems: the Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement q(x).

q(x)︸︷︷︸
measurement

=
∫

M(x | y)︸ ︷︷ ︸
transfer

· p(y)︸︷︷︸
target

dy

Approach: set up a system of linear equations

q = Mp where

{
q = 1

|B |
∑

x∈B φ(x)

Mi = 1
|Di|

∑
x∈Di

φ(x)

and solve it by minimizing some loss, i.e.,

p̂ = arg min
p ∈ ∆

` (p; q, M)
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≡ class label !

2 Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023
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Inverse Problems Everywhere: Count + Predict
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Cognitive Interests of Different Fields

Physics: physical implications of the result p̂

accurate observation of particle sources

validation of theories about:

– particle acceleration

– dark matter

– …

key assumption: p̂ ≈ p∗

Computer Science / ML: implications of the choice

of φ and ` on p̂ → p∗

statistical consistency

convergence

robustness and data quality

key assumption: MC data is sufficiently informative
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Addressing the

Central Questions of

This Workshop



What Can Be Measured? / Consequences of Ill-Posedness

Most methods3 are both Fisher-consistent4 and asymptotically consistent.5

3quality improves

with data volume 3errors canbe estimated 3
(perfect

measurement

if data was

infinite)

Key Assumption: P(X | Y ) is stable = no data-MC mismatch besides the spectrum 7

3 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
4 Tasche, “Fisher consistency for prior probability shift”, 2017.
5 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023.
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What Can Be Measured? / Consequences of Ill-Posedness

Fig: Perfect unfolding; no data-MC mismatches & abundant data.
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What Can Be Measured? / Consequences of Ill-Posedness

Fig: Unfolding with different data-MC mismatches.
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What Can Be Measured? / Consequences of Ill-Posedness

Fig: Unfolding with little measured data.
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What Can Be Measured? / Consequences of Ill-Posedness

Fig: Unfolding with little MC data.

Measurement is working at least as lo
ng as

the simulation is perfect and data abundant.

Open issue: treating mismatches through systematics.
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To What Extent is the Measurement Theory-Laden?

Regularization: introduces preference towards certain properties of the spectrum

needed for maximum accuracy

sacrifices sensitivity to deviations from these properties

impact can be controlled by setting a scalar parameter value

Example: Tikhonov regularization linearizes p̂ (Question 4: assumptions about p∗)

increases smoothness of measurements

reduces sensitivity to bumps and kinks
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To What Extent is the Measurement Theory-Laden?

Fig: Unfolding with little measured data, revisited with less regularization.
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To What Extent is the Measurement Theory-Laden?

Fig: “Perfect unfolding” from before, but entirely without regularization.

Regularization imposes only a “weak theory”

(smoothness) and must be carefully balanced.

by the analyst

or automatically
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The Role of the Background

Removal of background: before unfolding, using binary classification.

Balance between purity and sensitivity?

with background, the model becomes q′ = q + b = Mp + b

hence, b has to be removed from both sides

purity & sensitivity do not affect the unfolding

potential difficulty (again): data-MC mismatches

Background does not impose additional difficulties
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Recap: Cognitive Interests of Different Fields

Physics: physical implications of the result p̂

accurate observation of particle sources

validation of theories about:

– particle acceleration

– dark matter

– …

key assumption: p̂ ≈ p∗

Computer Science / ML: implications of the choice

of φ and ` on p̂ → p∗

statistical consistency

convergence

robustness and data quality

key assumption: MC data is sufficiently informative
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Conclusion: ML Perspective on the Inverse Problem

What can be measured? / Consequences of ill-posedness:

measurement is working, as long as the simulation is perfect

open issue: treatment of mismatches through systematics

To what extend is the measurement theory-laden?

careful balance is necessary (by user & by algorithms)

The role of the background:

no additional difficulties

Central epistemological problems: MC quality & data volume
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Backup Slides:

5 Learnings From

Quantification Research



1st Learning: Statistical Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),

it would return the true class prevalences:

h′
(
Q(X)

)︸ ︷︷ ︸
population
analogue
of h(B)

= Q(Y ) ∀ Q : Q(X | Y ) = P(X | Y )︸ ︷︷ ︸
for any Q with PPS

can also be defined for other types of data set shift

not a sufficient but certainly a necessary criterion for quantifier selection

1) RUN6 / TRUEE (and others) are Fisher consistent7 3

2) DSEA & DSEA+ are not Fisher consistent8 7

6 Blobel, “An unfolding method for high energy physics experiments”, 2002, .
7 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
8 Gövert, “Fisher-Konsistenz für Quantification-Algorithmen”, 2023.
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2nd Learning: The Anatomy of Prediction Errors

Prediction Error Bound:9 describes the impact of and the interplay between causes of errors.

∥∥h(B) − p∗
∥∥

2︸ ︷︷ ︸
prediction error

≤
2k(2 +

√
2 log 2C

δ
)√

λ2︸ ︷︷ ︸
representation φ

·
( ∥∥ p∗

ptrn

∥∥
2︸ ︷︷ ︸

shift

·
1√
|D|︸ ︷︷ ︸

volume D

+
1√
|B|︸ ︷︷ ︸

volume B

)

where

h(B) is the solution of q = Mp

k is a constant s.t. ‖φ(x)‖2 ≤ k ∀ x ∈ X

λ2 is the second-smallest eigenvalue of some particular G

δ is the desired probability

9 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023, .
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3rd Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN6 p̂ = arg min
p ∈ RC

`(p; q, M) invalid: p̂ /∈ ∆ 7

TRUEE10 p̂ = arg min
p ≥ 0

`(p; q, M) invalid: p̂ /∈ ∆ 7

Constrained11 p̂ = arg min
p ∈ ∆

`(p; q, M) valid 3

Soft-Max11 p̂ = σ(l∗) , l∗ = arg min
l ∈ RC−1

`( σ(l) ; q, M) valid 3

10 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
11 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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4th Learning: Methods Are Numerous

Most methods are combinations of

a data representation φ : X → Z
a loss function ` : Z × Z → R
an optimization algorithm

These components can be recombined to even more methods.

Representations: hard12 & soft13 classification, histograms14, tree-based binnings15, kernel means16, …

Loss Functions: least squares12,13, Hellinger distance14, energy distance16, Poisson likelihood6, …

How to Choose? axiomatic approach required but up to you (consistency, simplicity, transparency, …?)

12 Forman, “Quantifying counts and costs via classification”, 2008, .
13 Bella et al., “Quantification via Probability Estimators”, 2010, .
14 González-Castro, Alaíz-Rodríguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .
15 Börner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .
16 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,

2016, .
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5th Learning: Open Issues in Quantification Research

Complications of Experimental Physics:

ordinality: yi ≺ yi+1 ∀ i ∈ Y (to be covered through regularization for ordinal plausibility17)

background: Q(x) = Q(x,∅) +
∑C

y=1 Q(x, y) (PPS with a noise class9)

acceptance / class-conditional selection bias: Q(x ∈ B | yi) 6= Q(x ∈ B | yj) ∃ i 6= j

changing environment: Q(x, y) =
∑

e∈E Q(x, y, e)

data-MC mismatches / concept shift: Q(x | y) 6= P(x | y) (in addition to PPS)

inspect contributions of individual data items x ∈ B to h(B) (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

17 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:

3) Contraints must be implemented, either explicitly or via soft-max

4) Many methods—or aspects thereof—have a potential for improving physics analyses

5) Physics applications motivate further developments in quantification research
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