

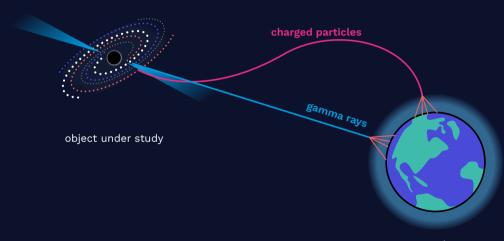
A Machine Learning Perspective on the Inverse Problem

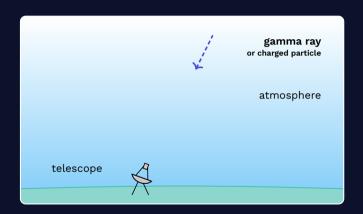
Mirko Bunse

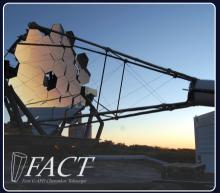
APP & Philosophy Workshop 2025 – November 13th

Partner institutions:

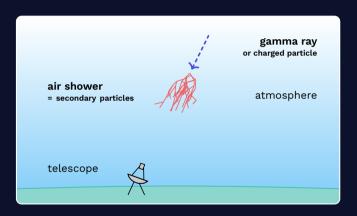
Institutionally funded by:



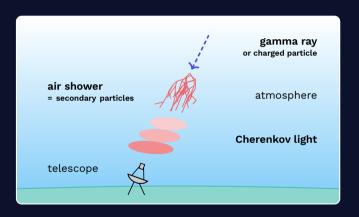




¹ Fig: Bockermann et al., "Online Analysis of High-Volume Data Streams in Astroparticle Physics", 2015

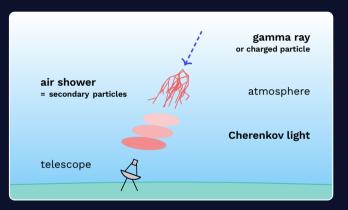


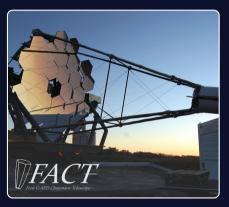
¹ Fig: Bockermann et al., "Online Analysis of High-Volume Data Streams in Astroparticle Physics", 2015



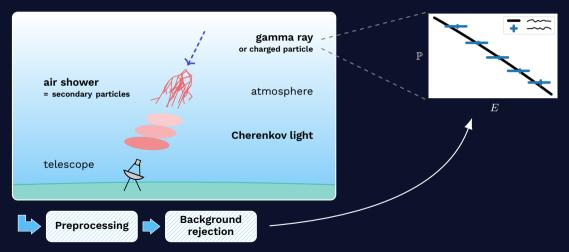


¹ Fig: Bockermann et al., "Online Analysis of High-Volume Data Streams in Astroparticle Physics", 2015



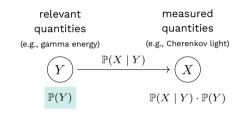


¹ Fig: Bockermann et al., "Online Analysis of High-Volume Data Streams in Astroparticle Physics", 2015

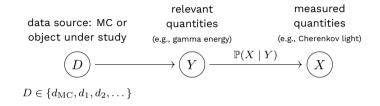


¹ Fig: Bockermann et al., "Online Analysis of High-Volume Data Streams in Astroparticle Physics", 2015

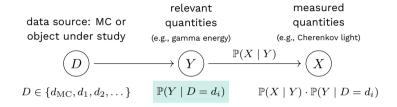
relevant measured quantities quantities (e.g., gamma energy) (e.g., Cherenkov light) $\underbrace{ \left(Y \right) \longrightarrow \left(X \right) }$



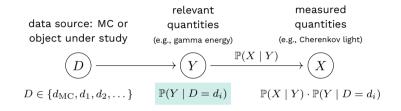
 $\qquad \qquad \mathbf{F}(X) = \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$ from $\mathbb{P}(X) = \mathbb{P}(X \mid Y) \cdot \mathbb{P}(Y)$



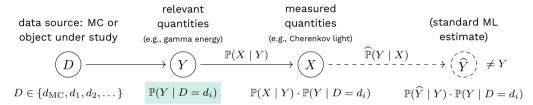
▶ Goal: estimate what?



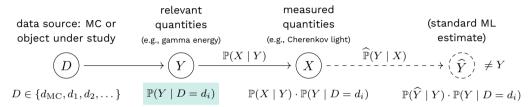
▶ Goal: estimate $\mathbb{P}(Y \mid D = d_i)$ from $\mathbb{P}(X \mid D = d_i)$



- ▶ Goal: estimate $\mathbb{P}(Y \mid D = d_i)$ from $\mathbb{P}(X \mid D = d_i)$
 - d_i induce different distributions $\mathbb{P}(Y \mid D = d_i)$
 - d_i induce different measurements $\mathbb{P}(X \mid D = d_i)$
 - use MC data from $\mathbb{P}(X,Y\mid D=d_{\mathrm{MC}})$
- lacktriangledown Key assumption: $\mathbb{P}(X\mid Y)$ is stable across domains



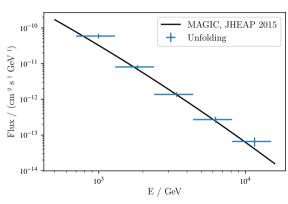
- ▶ **Goal:** estimate $\mathbb{P}(Y \mid D = d_i)$ from $\mathbb{P}(X \mid D = d_i)$
 - d_i induce different distributions $\mathbb{P}(Y \mid D = d_i)$
 - d_i induce different measurements $\mathbb{P}(X \mid D = d_i)$
 - use MC data from $\mathbb{P}(X,Y\mid D=d_{\mathrm{MC}})$
- **Key assumption:** $\mathbb{P}(X \mid Y)$ is stable across domains
- **Standard machine learning** falsely assumes $\mathbb{P}(Y \mid D = d_i)$ to be stable, too.



- ▶ Goal: estimate $\mathbb{P}(Y \mid D = d_i)$ from $\mathbb{P}(X \mid D = d_i)$
 - d_i induce different distributions $\mathbb{P}(Y \mid D = d_i)$
 - d_i induce different measurements $\mathbb{P}(X \mid D = d_i)$
 - use MC data from $\mathbb{P}(X,Y\mid D=d_{\mathrm{MC}})$
- **Key assumption:** $\mathbb{P}(X \mid Y)$ is stable across domains
- **Standard machine learning** falsely assumes $\mathbb{P}(Y \mid D = d_i)$ to be stable, too.
- ▶ Solution: proper modeling of the measurement process & no false assumptions → Fredholm equation

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

$$\underbrace{q(x)}_{\text{measurement}} \ = \ \int \underbrace{M(x \mid y)}_{\text{transfer}} \cdot \underbrace{p(y)}_{\text{target}} \, \mathrm{d}y$$



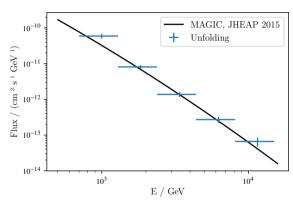
² Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

$$\underbrace{q(x)}_{\text{measurement}} \ = \ \int \underbrace{M(x \mid y)}_{\text{transfer}} \cdot \underbrace{p(y)}_{\text{target}} \, \mathrm{d}y$$

Approach: set up a system of linear equations

$$\mathbf{q} = \mathbf{M}\mathbf{p}$$
 where $\left\{ egin{aligned} \mathbf{q} &= rac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \phi(x) \ \mathbf{M}_i &= rac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{aligned}
ight.$



² Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

Goal: reconstruct the spectrum p(y) of some quantity y from a measurement q(x).

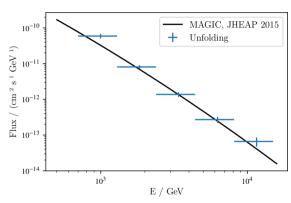
$$\underbrace{q(x)}_{\text{measurement}} \ = \ \int \underbrace{M(x \mid y)}_{\text{transfer}} \cdot \underbrace{p(y)}_{\text{target}} \, \mathrm{d}y$$

Approach: set up a system of linear equations

$$\mathbf{q} = \mathbf{M}\mathbf{p} \qquad \text{where } \begin{cases} \mathbf{q} &= \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \ \phi(x) \\ \mathbf{M}_i &= \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{cases}$$

and solve it by minimizing some loss, i.e.,

$$\hat{\mathbf{p}} = \underset{\mathbf{p} \in \Delta}{\operatorname{arg\,min}} \ \ell\left(\mathbf{p}; \ \mathbf{q}, \mathbf{M}\right)$$



² Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

 $\begin{tabular}{ll} \textbf{Goal:} & \end{tabular} & \end{tabular}$

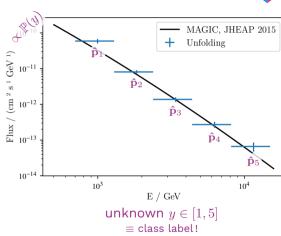
$$\underbrace{q(x)}_{\text{measurement}} \ = \ \int \underbrace{M(x \mid y)}_{\text{transfer}} \cdot \underbrace{p(y)}_{\text{target}} \, \mathrm{d}y$$

Approach: set up a system of linear equations

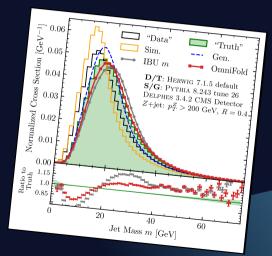
$$\mathbf{q} = \mathbf{M}\mathbf{p} \qquad \text{where } \begin{cases} \mathbf{q} &= \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \ \phi(x) \\ \mathbf{M}_i &= \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{cases}$$

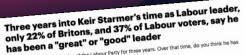
and solve it by minimizing some loss, i.e.,

$$\hat{\mathbf{p}} = \underset{\mathbf{p} \in \Delta}{\operatorname{arg\,min}} \ \ell\left(\mathbf{p}; \ \mathbf{q}, \mathbf{M}\right)$$



² Fig.: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023



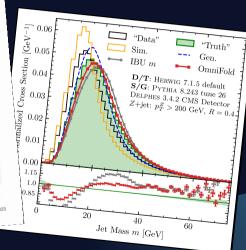


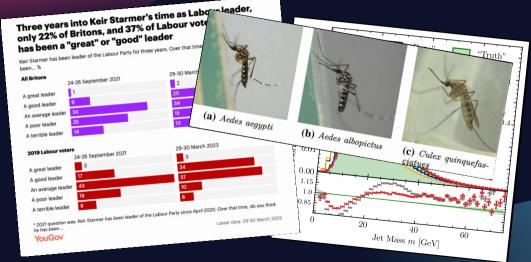
Keir Starmer has been leader of the Labour Party for three years. Over that time, do you think he has

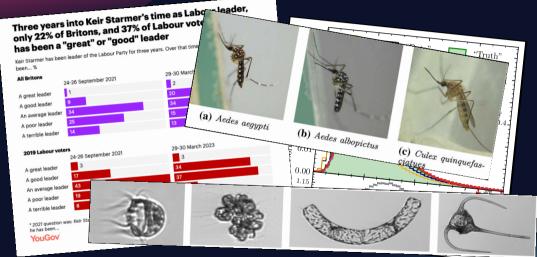
* 2021 question was: Keir Starmer has been leader of the Labour Party since April 2020. Over that time, do you think Latest data: 29-30 March 2023

YouGov

he has been...



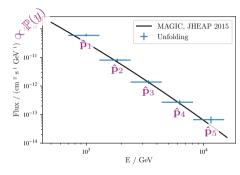




Cognitive Interests of Different Fields

Physics: physical implications of the result $\hat{\mathbf{p}}$

- accurate observation of particle sources
- validation of theories about:
 - particle acceleration
 - dark matter
 - ..
- key assumption: $\hat{\mathbf{p}} \approx \mathbf{p}^*$



$$\begin{split} \hat{\mathbf{p}} &= \operatorname*{arg\,min}_{\mathbf{p} \in \Delta} \ell\left(\mathbf{p}; \, \mathbf{q}, \mathbf{M}\right) \\ \mathbf{q} &= \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \phi(x) \\ \mathbf{M}_i &= \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{split}$$

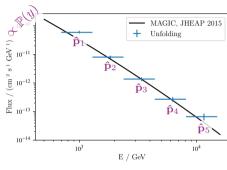
Cognitive Interests of Different Fields

Physics: physical implications of the result $\hat{\mathbf{p}}$

- accurate observation of particle sources
- ▶ validation of theories about:
 - particle acceleration
 - dark matter
 - ..
- key assumption: $\hat{\mathbf{p}} \approx \mathbf{p}^*$

Computer Science / ML: implications of the choice of ϕ and ℓ on $\hat{\mathbf{p}} \to \mathbf{p}^*$

- ▶ statistical consistency
- convergence
- robustness and data quality
- ▶ key assumption: MC data is sufficiently informative



$$\begin{split} \hat{\mathbf{p}} &= \operatorname*{arg\,min}_{\mathbf{p} \in \Delta} \ell\left(\mathbf{p}; \, \mathbf{q}, \mathbf{M}\right) \\ \mathbf{q} &= \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \, \phi(x) \\ \mathbf{M}_i &= \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x) \end{split}$$

Addressing the Central Questions of This Workshop

Most methods³ are both Fisher-consistent⁴ and asymptotically consistent.⁵

³ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁴ Tasche, "Fisher consistency for prior probability shift", 2017.

⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Most methods³ are both Fisher-consistent⁴ and asymptotically consistent.⁵

quality improves with data volume

³ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁴ Tasche, "Fisher consistency for prior probability shift", 2017.

⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Most methods³ are both Fisher-consistent⁴ and asymptotically consistent.⁵

quality improves with data volume

errors can be estimated

³ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁴ Tasche, "Fisher consistency for prior probability shift", 2017.

⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Most methods³ are both Fisher-consistent⁴ and asymptotically consistent.⁵

quality improves with data volume

errors can be estimated (perfect measurement if data was infinite)

³ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁴ Tasche, "Fisher consistency for prior probability shift", 2017.

⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Most methods³ are both Fisher-consistent⁴ and asymptotically consistent.⁵

quality improves with data volume

errors can be estimated

(perfect measurement if data was infinite)

Key Assumption: $\mathbb{P}(X \mid Y)$ is stable = no data-MC mismatch besides the spectrum X

³ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁴ Tasche, "Fisher consistency for prior probability shift", 2017.

Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Fig: Perfect unfolding; no data-MC mismatches & abundant data.

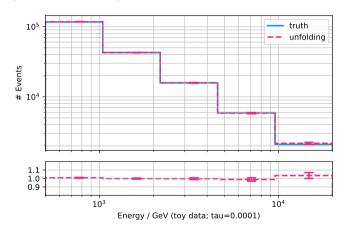


Fig: Unfolding with different data-MC mismatches.

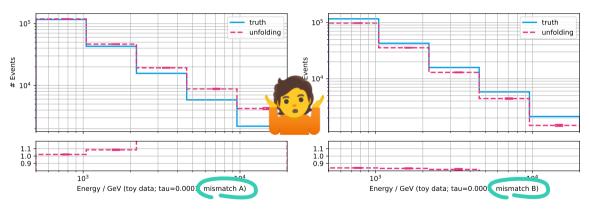
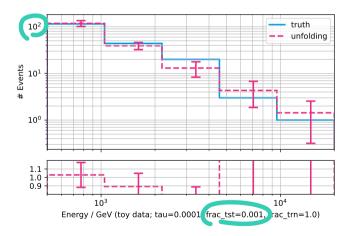
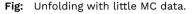


Fig: Unfolding with little measured data.





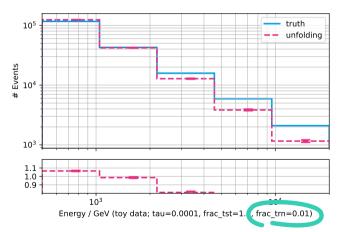


Fig: Unfolding with little MC data.

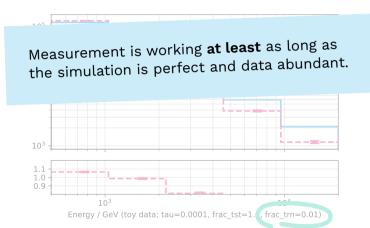


Fig: Unfolding with little MC data.

Measurement is working **at least** as long as the simulation is perfect and data abundant.

Open issue: treating mismatches through systematics.

Regularization: introduces preference towards certain properties of the spectrum

- ▶ needed for maximum accuracy
- sacrifices sensitivity to deviations from these properties
- ▶ impact can be controlled by setting a scalar parameter value

Regularization: introduces preference towards certain properties of the spectrum

- needed for maximum accuracy
- sacrifices sensitivity to deviations from these properties
- ▶ impact can be controlled by setting a scalar parameter value

Example: Tikhonov regularization linearizes $\hat{\mathbf{p}}$ (Question 4: assumptions about \mathbf{p}^*)

- increases smoothness of measurements
- reduces sensitivity to bumps and kinks

Fig: Unfolding with little measured data, revisited with less regularization.

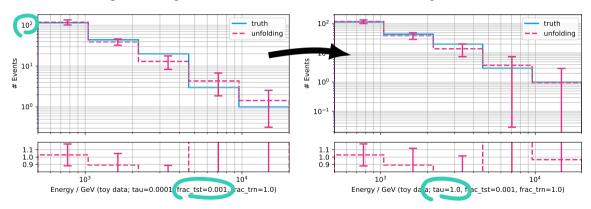


Fig: Unfolding with little MC data, revisited with less regularization.

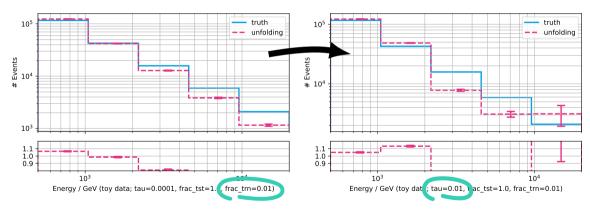


Fig: "Perfect unfolding" from before, but entirely without regularization.

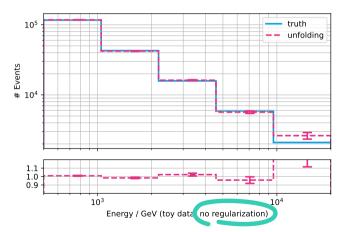


Fig: "Perfect unfolding" from before, but entirely without regularization.

Regularization imposes only a "weak theory" (smoothness) and must be carefully balanced.

- by the analyst
- or automatically

The Role of the Background

Removal of background: before unfolding, using binary classification.

The Role of the Background

Removal of background: before unfolding, using binary classification.

Balance between purity and sensitivity?

- lacktriangle with background, the model becomes $\mathbf{q'} = \mathbf{q} + \mathbf{b} = \mathbf{Mp} + \mathbf{b}$
- ▶ hence, b has to be removed from both sides

The Role of the Background

Removal of background: before unfolding, using binary classification.

Balance between purity and sensitivity?

- lacktriangle with background, the model becomes ${f q}'={f q}+{f b}={f M}{f p}+{f b}$
- ▶ hence, b has to be removed from both sides
- purity & sensitivity do not affect the unfolding
- ▶ potential difficulty (again): data-MC mismatches

Background does not impose additional difficulties

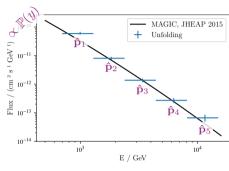
Recap: Cognitive Interests of Different Fields

Physics: physical implications of the result $\hat{\mathbf{p}}$

- accurate observation of particle sources
- validation of theories about:
 - particle acceleration
 - dark matter
 - ..
- key assumption: $\hat{\mathbf{p}} \approx \mathbf{p}^*$

Computer Science / ML: implications of the choice of ϕ and ℓ on $\hat{\mathbf{p}} \to \mathbf{p}^*$

- statistical consistency
- ▶ convergence
- robustness and data quality
- ▶ key assumption: MC data is sufficiently informative



$$\hat{\mathbf{p}} = \underset{\mathbf{p} \in \Delta}{\arg \min} \ell \left(\mathbf{p}; \, \mathbf{q}, \mathbf{M} \right)$$

$$\mathbf{q} = \frac{1}{|\mathbf{B}|} \sum_{x \in \mathbf{B}} \phi(x)$$

$$\mathbf{M}_i = \frac{1}{|\mathbf{D}_i|} \sum_{x \in \mathbf{D}_i} \phi(x)$$

Conclusion: ML Perspective on the Inverse Problem

What can be measured? / Consequences of ill-posedness:

- ▶ measurement is working, as long as the simulation is perfect
- ▶ open issue: treatment of mismatches through systematics

Conclusion: ML Perspective on the Inverse Problem

What can be measured? / Consequences of ill-posedness:

- ▶ measurement is working, as long as the simulation is perfect
- ▶ open issue: treatment of mismatches through systematics

To what extend is the measurement theory-laden?

careful balance is necessary (by user & by algorithms)

Conclusion: ML Perspective on the Inverse Problem

What can be measured? / Consequences of ill-posedness:

- ▶ measurement is working, as long as the simulation is perfect
- ▶ open issue: treatment of mismatches through systematics

To what extend is the measurement theory-laden?

careful balance is necessary (by user & by algorithms)

The role of the background:

no additional difficulties

Central epistemological problems: MC quality & data volume

Backup Slides: 5 Learnings From Quantification Research

1st Learning: Statistical Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population $\mathbb{Q}(X)$ (i.e., to "unlimited data"), it would return the true class prevalences:

$$\underbrace{h'\Big(\mathbb{Q}(X)\Big)}_{\begin{subarray}{c} \mathsf{population} \\ \mathsf{analogue} \\ \mathsf{of}\ h(B)\end{subarray}} = \mathbb{Q}(Y) \qquad \underbrace{\forall\ \mathbb{Q}: \mathbb{Q}(X\mid Y) = \mathbb{P}(X\mid Y)}_{\begin{subarray}{c} \mathsf{for\ any}\ \mathbb{Q}\ with\ \mathsf{PPS} \\ \mathsf{of}\ h(B)\end{subarray}}_{\end{subarray}}$$

⁶ Blobel, "An unfolding method for high energy physics experiments", 2002, .

⁷ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁸ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023.

1st Learning: Statistical Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population $\mathbb{Q}(X)$ (i.e., to "unlimited data"), it would return the true class prevalences:

$$\underbrace{h'\Big(\mathbb{Q}(X)\Big)}_{\begin{subarray}{c} \mathsf{population}\\ \mathsf{analogue}\\ \mathsf{of}\ h(\mathsf{B})\end{subarray}} = \mathbb{Q}(Y) \qquad \underbrace{\forall\ \mathbb{Q}\ :\ \mathbb{Q}(X\mid Y) = \mathbb{P}(X\mid Y)}_{\begin{subarray}{c} \mathsf{for\ any}\ \mathbb{Q}\ \ with\ \mathsf{PPS}\\ \end{subarray}}_{\begin{subarray}{c} \mathsf{for\ any}\ \mathbb{Q}\ \ \mathsf{with\ PPS}\\ \end{subarray}}$$

- ▶ can also be defined for other types of data set shift
- ▶ not a sufficient but certainly a necessary criterion for quantifier selection

⁶ Blobel, "An unfolding method for high energy physics experiments", 2002, .

⁷ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁸ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023.

1st Learning: Statistical Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population $\mathbb{Q}(X)$ (i.e., to "unlimited data"), it would return the true class prevalences:

$$\underbrace{h'\Big(\mathbb{Q}(X)\Big)}_{\begin{subarray}{c} \mathsf{population}\\ \mathsf{analogue}\\ \mathsf{of}\ h(B)\end{subarray}} = \mathbb{Q}(Y) \qquad \underbrace{\forall\ \mathbb{Q}: \mathbb{Q}(X\mid Y) = \mathbb{P}(X\mid Y)}_{\begin{subarray}{c} \mathsf{for\ any}\ \mathbb{Q}\ \text{with\ PPS}\\ \end{subarray}}_{\begin{subarray}{c} \mathsf{for\ any}\ \mathbb{Q}\ \text{with\ PPS}\\ \end{subarray}}$$

- ▶ can also be defined for other types of data set shift
- ▶ not a sufficient but certainly **a necessary criterion** for quantifier selection
- 1) RUN⁶ / TRUEE (and others) are Fisher consistent⁷ \checkmark
- 2) DSEA & DSEA+ are not Fisher consistent⁸

⁶ Blobel, "An unfolding method for high energy physics experiments", 2002, .

Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

⁸ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023.

2nd Learning: The Anatomy of Prediction Errors

Prediction Error Bound: describes the impact of and the interplay between causes of errors.

$$\underbrace{\left\|h(\mathbf{B}) - \mathbf{p}^*\right\|_2}_{\text{prediction error}} \quad \leq \quad \underbrace{\frac{2k(2 + \sqrt{2\log\frac{2C}{\delta}})}{\sqrt{\lambda_2}}}_{\text{representation }\phi} \cdot \left(\underbrace{\left\|\frac{\mathbf{p}^*}{\mathbf{p}_{\text{trn}}}\right\|_2}_{\text{shift}} \cdot \underbrace{\frac{1}{\sqrt{|\mathbf{D}|}}}_{\text{volume }\mathbf{D}} + \underbrace{\frac{1}{\sqrt{|\mathbf{B}|}}}_{\text{volume }\mathbf{D}}\right)$$

where

- ▶ h(B) is the solution of q = Mp
- $\blacktriangleright \ \ k \ \ \text{is a constant s.t.} \ \ \|\phi(x)\|_2 \leq k \ \ \forall \ x \in \mathcal{X}$
- lacktriangledown λ_2 is the second-smallest eigenvalue of some particular ${f G}$
- lacktriangledown δ is the desired probability

⁹ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023, .

Algorithm	Estimate		Validity
RUN ⁶	$\hat{\mathbf{p}} = {\operatorname{argmin}}$	$\ell(\mathbf{p};\ \mathbf{q},\mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta$ X
	$\mathbf{p} \in \mathbb{R}^C$		

¹⁰ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

¹¹ Bunse, "On Multi-Class Extensions of Adjusted Classify and Count", 2022, .

Algorithm	Estimate	Validity
RUN ⁶	$\hat{\mathbf{p}} = {\operatorname{argmin}} \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta$ $m{X}$
	$\mathbf{p} \in \mathbb{R}^C$	
TRUEE ¹⁰	$\hat{\mathbf{p}} = \underset{\mathbf{p} \geq 0}{\operatorname{arg min}} \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta$ $m{X}$

¹⁰ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

¹¹ Bunse, "On Multi-Class Extensions of Adjusted Classify and Count", 2022, .

Algorithm	Estimate	Validity
RUN ⁶	$\hat{\mathbf{p}} = \underset{\mathbf{p} \in \mathbb{R}^{C}}{\operatorname{arg min}} \ \ell(\mathbf{p}; \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta$ $ mathcal{X}$
TRUEE ¹⁰	$\hat{\mathbf{p}} = \underset{\mathbf{p} \geq 0}{\operatorname{arg min}} \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta$ \times
Constrained ¹¹	$\hat{\mathbf{p}} = rg \min_{\mathbf{p} \in \Delta} \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$	valid 🗸

¹⁰ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

¹¹ Bunse, "On Multi-Class Extensions of Adjusted Classify and Count", 2022, .

Algorithm	Estimate	Validity
RUN ⁶	$\hat{\mathbf{p}} = \arg \min_{\mathbf{p} \in \mathbb{R}^C} \ \ell(\mathbf{p}; \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta$ X
TRUEE ¹⁰	$\hat{\mathbf{p}} = \underset{\mathbf{p} \geq 0}{\operatorname{arg min}} \ \ell(\mathbf{p}; \ \mathbf{q}, \mathbf{M})$	invalid: $\hat{\mathbf{p}} \notin \Delta$ \times
Constrained ¹¹	$\hat{\mathbf{p}} = \underset{\mathbf{p} \in \Delta}{\operatorname{arg min}} \ \ell(\mathbf{p}; \mathbf{q}, \mathbf{M})$	valid 🗸
Soft-Max ¹¹	$\hat{\mathbf{p}} = \left[\sigma(\mathbf{l}^*) \right], \mathbf{l}^* = \underset{\mathbf{l} \in \mathbb{R}^{C-1}}{\operatorname{arg min}} \ \ell(\left[\sigma(\mathbf{l}) \right]; \ \mathbf{q}, \mathbf{M})$	valid 🗸

¹⁰ Milke et al., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics", 2013.

¹¹ Bunse, "On Multi-Class Extensions of Adjusted Classify and Count", 2022, .

4th Learning: Methods Are Numerous

Most methods are combinations of

▶ a data representation $\phi: \mathcal{X} \to \mathcal{Z}$

▶ a loss function $\ell: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$

▶ an optimization algorithm

These components can be recombined to even more methods.

¹² Forman, "Quantifying counts and costs via classification", 2008, .

¹³ Bella et al., "Quantification via Probability Estimators", 2010, .

¹⁴ González-Castro, Alaíz-Rodríguez, and Alegre, "Class distribution estimation based on the Hellinger distance", 2013, .

¹⁵ Börner et al., "Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era", 2020, .

¹⁶ Kawakubo, Plessis, and Sugiyama, "Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance", 2016, .

4th Learning: Methods Are Numerous

\$

Most methods are combinations of

▶ a data representation $\phi: \mathcal{X} \to \mathcal{Z}$

▶ a loss function $\ell: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$

an optimization algorithm

github.com/mirkobunse/qunfold

These components can be recombined to even more methods.

Representations: hard¹² & soft¹³ classification, histograms¹⁴, tree-based binnings¹⁵, kernel means¹⁶, ...

Loss Functions: least squares^{12,13}, Hellinger distance¹⁴, energy distance¹⁶, Poisson likelihood⁶, ...

How to Choose? axiomatic approach required but up to you (consistency, simplicity, transparency, ...?)

¹² Forman, "Quantifying counts and costs via classification", 2008, .

¹³ Bella et al., "Quantification via Probability Estimators", 2010, .

¹⁴ González-Castro, Alaíz-Rodríguez, and Alegre, "Class distribution estimation based on the Hellinger distance", 2013, .

¹⁵ Börner et al., "Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era", 2020, .

¹⁶ Kawakubo, Plessis, and Sugiyama, "Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance", 2016, .

Complications of Experimental Physics:

▶ ordinality: $y_i \prec y_{i+1} \ \forall i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility¹⁷)

¹⁷ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

- lacktriangledown ordinality: $y_i \prec y_{i+1} \ orall \ i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility i)
- $\blacktriangleright \ \ \text{background:} \ \ \mathbb{Q}(\mathbf{x}) \, = \, \mathbb{Q}(\mathbf{x},\varnothing) + \sum\nolimits_{u=1}^C \mathbb{Q}(\mathbf{x},y) \quad \ \ \text{(PPS with a noise class9)}$

¹⁷ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

- lacktriangledown ordinality: $y_i \prec y_{i+1} \ orall \ i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility 17)
- lacksquare background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x},\varnothing) + \sum_{u=1}^C \mathbb{Q}(\mathbf{x},y)$ (PPS with a noise class⁹)
- ▶ acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in \mathcal{B} \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in \mathcal{B} \mid y_i) \exists i \neq j$

¹⁷ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

- lacktriangledown ordinality: $y_i \prec y_{i+1} \ orall \ i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility i)
- $lackbox{ background: } \mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x},\varnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x},y) \quad \text{(PPS with a noise class}^9)$
- ▶ acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$

¹⁷ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

- lacktriangledown ordinality: $y_i \prec y_{i+1} \ orall \ i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility 17)
- $lackbox{ background: } \mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x},\varnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x},y) \quad \text{(PPS with a noise class}^9)$
- ▶ acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$
- ▶ data-MC mismatches / concept shift: $\mathbb{Q}(\mathbf{x} \mid y) \neq \mathbb{P}(\mathbf{x} \mid y)$ (in addition to PPS)

¹⁷ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Complications of Experimental Physics:

- lacktriangledown ordinality: $y_i \prec y_{i+1} \ orall \ i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility i)
- $lackbox{ background: } \mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x},\varnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x},y) \quad \text{(PPS with a noise class}^9)$
- ▶ acceptance / class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$
- ▶ data-MC mismatches / concept shift: $\mathbb{Q}(\mathbf{x} \mid y) \neq \mathbb{P}(\mathbf{x} \mid y)$ (in addition to PPS)
- lacktriangle inspect contributions of individual data items ${f x}\in B$ to h(B) (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

¹⁷ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

- 1) Consistency is a necessary criterion for algorithm selection
- 2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

- 1) Consistency is a necessary criterion for algorithm selection
- 2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:

- 3) Contraints must be implemented, either explicitly or via soft-max
- 4) Many methods—or aspects thereof—have a potential for improving physics analyses
- 5) Physics applications motivate further developments in quantification research