
Diagonalizing the Unfolding Problem
– figure out what can be learned and what not –

Michael Schmelling / MPI for Nuclear Physics

Disclaimer
This presentation is about ongoing work, i.e. math and story line are still evolving.
Only the simplest case of a 1-dim linear unfolding problem is discussed. The talk

focuses on results. Mathematical details are given in the backup slides.
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Introduction

❖ sketch of a typical 1-dim measurement problem
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given: noisy data that estimate the observable distibution
known: detector response, i.e. efficiency, biases and smearing
wanted: an estimate of the true distribution

in the following: linear detector response and counting statistics ➜
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The linear model

❖ Fredholm integral equation of 1st kind

g(x ) =
∫
dy R(x , y) f (y)

f (y): true density – unknown

▶ integration over the full range allowed for y
▶ nature generates values y according to f (y)
R(x , y): response function of the detector – known

▶ density in x for fixed y
g(x ): parent distribution of the actual observations – approximately known

▶ an experiment records IID measurements xi , i = 1, . . . ,N drawn from g(x )
▶ the sample size N is a Poisson distributed random variable
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The full story?

❖ real life is more complicated than Fredholm’s equation

g(x ) =
∫
dy R0(x )

+

∫
dy R1(x , y)f (y)

+

∫
dy dy ′ R2(x , y , y ′)f (y)f (y ′)

+

∫
dy dy ′dy ′′ R3(x , y , y ′, y ′′)f (y)f (y ′)f (y ′′)

+ . . .

back to looking only at the 2nd term ➜
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often used: histogram approximation

integral equation ➜ matrix equation

ak =

nb∑
l=1

Rklbl or a = Rb

with

ak =

∫
∆xk

dx g(x ) , bl =

∫
∆yl

dy f (y) and Rkl =
1

∆yl

∫
∆xk

dx
∫
∆yl

dy R(x , y)

▶ a : histogram of the observed distribution
▶ b: histogram of the true distribution
▶ R: response matrix

numerically attractive because it requires to handle only finite dimensional matrices
model dependence from choice of binning

unbinned unfolding ➜
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Ansatz: expansion into a complete set of basis functions

❖ starting point: symmetric positive definite operator T (y , y ′)

T (y , y ′) =

∫
dx dx ′ R(x , y)R(x ′, y ′)w (x , x ′)

appropriate functional form to address the unfolding problem

any symmetric positive definite weight function w (x , x ′) is allowed

simplest choice: w (x , x ′) = δ(x − x ′)

optimum choice for IID data with Poisson distributed sample size:

w (x , x ′) =
δ(x − x ′)

g(x )

▶ in practice use a Maximum Likelihood estimate ĝ(x ) instead of g(x )
▶ asymptotic properties are obtained by setting ĝ(x ) = g(x )
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❖ properties of the eigenfunctions bk (y) of T (y , y ′)∫
dy ′ T (y , y ′)bk (y ′) = λk bk (y)

ordered positive eigenvalues λk > λk+1 > 0 ∀ k

w (x , x ′) ∝ 1/N ➜ λk ∝ 1/N

orthonormality ∫
dy bk (y) bl (y) = δkl

completeness ∞∑
k=0

bk (y) bk (y ′) = δ(y − y ′)
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❖ the unfolding problem in the basis bk (y)

f (y) =
∞∑

k=0

βkbk (y) and g(x ) =
∞∑

k=0

βk ak (x ) with ak (x ) =
∫
dy R(x , y) bk (y)

note: from now on specialize to

w (x , x ′) =
δ(x − x ′)

ĝ(x )
▶ which implies

∫
dx

ak (x )al (x )
ĝ(x )

= λkδkl and it follows
∫
dx g(x )

ak (x )
ĝ(x )

= λkβk

employ this to estimate βk ➜
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❖ use the Law of Large Numbers and that expectation values are integrals

λkβk =

∫
dx g(x )

ak (x )
ĝ(x )

= N
∫
dx

g(x )
N

ak (x )
ĝ(x )

= N
〈

ak (x )
ĝ(x )

〉
estimates from a sample of N measurements

N
〈

ak (x )
ĝ(x )

〉
≈

N∑
i=1

ak (xi )

ĝ(xi )
= λk β̂k

covariance matrix of β̂k in the limit ĝ(x ) → g(x )

Ckl (β̂) =
δkl

λk

▶ the expansion coefficients contribute independent information (“diagonalization”)

▶ the variance grows with higher orders
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Information content of the expansion coefficients

counting experiments: information = number of events = significance2 = (n/
√

n)2

significance2 defines the equivalent number of events in βk :

Nk =
β2

k

Ckk (β)
= β2

kλk

sum rule in the limit ĝ(x ) = g(x ):
∞∑

k=0

Nk = N

▶ the observed N events are distributed into independent measurements of the βk

▶ the individual shares are proportional to β2
k and λk

▶ only the low-order coefficient get significant shares

numerical studies ➜
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Properties of the introductory example

❖ basis functions for true and observed distribution
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❖ coefficients for a low statistics measurement
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➜ the experimental information is contained in 10 coefficients
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❖ coefficients for a high statistics measurement
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➜ the experimental information is contained in 14 coefficients
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Interim summary

a recipe for an optimal basis bk (y) to parametrize f (y) has been given

▶ the expansion coefficients are independent

▶ they are estimated by simple sums of weights over the data

all information of the data about the true distribution is contained
in a small number of leading order coefficients

▶ for smooth functions the higher order terms are small βk ≪ 1
▶ higher order terms are suppressed by λk ≪ 1
▶ the variance of the higher order terms grows with 1/λk

unfolding has been factorized into two problems

▶ identifying the available information

▶ constructing an estimate f̂ (y) of the true distribution f (y)
first steps ➜
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Truncated expansion with only the well measured coefficients

f (y) =
∞∑

k=0

βkbk (y) ➜ f̂ (y) =
m∑

k=0

β̂kbk (y)

relation between f̂ (y) and f (y) if β̂k = βk

f̂ (y) =
∫
dy ′ P(y , y ′)f (y ′) with P(y , y ′) =

m∑
k=0

bk (y)bk (y ′)

▶ P(y , y ′) projects f (y) to the subspace spanned by the first m functions

▶ completeness of the basis bk (y) implies P(y , y ′) = δ(y − y ′) for m → ∞
different points y and y ′ are correlated with covariance

C (y , y ′) =

m∑
k=0

1
λk

bk (y)bk (y ′)
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Concluding discussion

every unfolding result f̂ (y) is characterized by a posterior response P(y , y ′)

f̂ (y) will be biased even if the coefficients βk are unbiased

fluctuations in the βk can cause unphysical structures ∝ bk (y) in f̂ (y)
▶ estimating f (y) by the truncated expansion may give unsatisfactory results

the basis bk (y) is detector specific

▶ comparison or combination of experiments not obvious

▶ check of theoretical predictions can be done for any basis bk (y)
more sophisticated regularisation schemes try to inject missing information

▶ adjust expansion coefficients within uncertainties

▶ invent higher order terms according to some prior knowledge

▶ modify posterior response and correlation function

▶ but the fundamental limitations of the truncated expansion always apply
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Backup
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Orthonormality of the basis bk (y)

Application of the eigenvalue equation shows

Ikl =
∫
dy bl (y) bk (y) =

1
λk

∫
dy dy ′ bl (y)T (y , y ′) bk (y ′) =

λl

λk

∫
dy ′ bl (y) bk (y ′)

and thus
Ikl =

λl

λk
Ikl

and it follows

▶ λk ̸= λl : Ikl = δkl

▶ λk = λl : orthogonal linear combinations of bk (y) and bl (y) exist

and with appropriate normalization:∫
dy bl (y) bk (y) = δkl
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Completeness of the basis bk (y)
Given an arbitrary function f (y) and it’s expansion into bk (y)

f (y) =
∞∑

k=0

βk bk (y) ,

the coefficients βk are obtained, using the orthonormality of the bk (y), by∫
dy bk (y) f (y) =

∫
dy bk (y)

∞∑
l=0

βlbl (y) =
∞∑

l=0

βl

∫
dy bk (y) bl (y) =

∞∑
l=0

βl δkl = βk .

Inserting the result for βk then yields

f (y) =
∞∑

k=0

bk (y)
∫
dy ′ bk (y ′) f (y ′) =

∫
dy ′ f (y ′)

∞∑
k=0

bk (y) bk (y ′)

which implies ∞∑
k=0

bk (y) bk (y ′) = δ(y − y ′)
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Orthogonality of the transformed basis ak (x )

According to the definition of ak (x ) one has∫
dx dx ′ ak (x )al (x ′)w (x , x ′) =

∫
dy dy ′ dx dx ′ R(x , y)bk (y)R(x ′, y ′)bl (y ′)w (x , x ′)

=

∫
dy dy ′ bk (y)T (y , y ′)bl (y ′) = λl

∫
dy bk (y) bl (y) = λlδkl

which for the special case

w (x , x ′) =
δ(x − x ′)

ĝ(x )
simplifies to

∫
dx

ak (x )al (x )
ĝ(x )

= λkδkl

and which with one finds∫
dx g(x )

ak (x )
ĝ(x )

=

∫
dx

∞∑
l=0

βlal (x )
ak (x )
ĝ(x )

=

∞∑
l=0

βl

∫
dx

al (x )ak (x )
ĝ(x )

= λkβk
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Decomposition of the response matrix

Using the completeness relation and the definition of ak (x ) one finds:

R(x , y) =
∫
dy ′ R(x , y ′) δ(y − y ′)

=

∫
dy ′ R(x , y)

∞∑
k=0

bk (y)bk (y ′)

=

∞∑
k=0

bk (y)
∫
dy ′ R(x , y ′)bk (y ′)

=

∞∑
k=0

bk (y)ak (x ) =
∞∑

k=0

ak (x )bk (y)
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Covariance matrix of β̂k

With the weight functions uk (x )

uk (x ) =
1
λk

ak (x )
ĝ(x )

and thus β̂k =

N∑
i=1

uk (xi )

one finds, for Poisson distributed samples sizes N with ⟨N (N − 1)⟩ = ⟨N ⟩2,

Ckl (β̂) =
〈
β̂k β̂l

〉
−
〈
β̂k

〉 〈
β̂l
〉

= ⟨N (N − 1)⟩ ⟨uk ⟩ ⟨ul ⟩+ ⟨N ⟩ ⟨ukul ⟩− ⟨N ⟩2 ⟨uk ⟩ ⟨ul ⟩

= ⟨N ⟩ ⟨ukul ⟩ = ⟨N ⟩
∫
dx

g(x )
⟨N ⟩

ak (x )al (x )
ĝ2(x )λkλl

=

∫
dx

ak (x )al (x )
ĝ(x )λkλl

=
δkl

λk
.

The last two steps follow in the limit ĝ(x ) = g(x ) and from the orthogonality of the ak (x ).

Diagonalizing the Unfolding Problem - Backup M. Schmelling, Dortmund, November 13–14, 2025 22



Sum rule

Given the number of equivalent events in βk

Nk =
β2

k

Ckk (β)
= β2

kλk

In the limit ĝ(x ) = g(x ) with

λkβk =

∫
dx g(x )

ak (x )
ĝ(x )

=

∫
dx ak (x )

one finds

∞∑
k=0

Nk =

∞∑
k=0

βk (βkλk ) =

∞∑
k=0

βk

∫
dx ak (x ) =

∫
dx

∞∑
k=0

βkak (x ) =
∫
dx g(x ) = N ,

i.e. effectively the total data set of N events is split into disjoint measurements of the βk .
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Covariance matrix of unfolded distribution

The covariance between two points y and y ′ is

C (y , y ′) =
〈
f̂ (y)f̂ (y ′)

〉
−
〈
f̂ (y)

〉〈
f̂ (y ′)

〉
and with

f (y) =
m∑

k=0

β̂k bk (y)

one finds

C (y , y ′) =

m∑
k ,l=0

〈
β̂k β̂l

〉
bk (y)bl (y ′) −

m∑
k ,l=0

〈
β̂
〉 〈

β̂l
〉
bk (y)bl (y ′)

=

m∑
k ,l=0

Ckl (β̂)bk (y)bl (y ′) =

m∑
k ,l=0

δkl

λk
] bk (y)bl (y ′) =

m∑
k=0

1
λk

bk (y)bl (y ′)
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