Diagonalizing the Unfolding Problem

— figure out what can be learned and what not —

Michael Schmelling / MPI for Nuclear Physics

Disclaimer

This presentation is about ongoing work, i.e. math and story line are still evolving.
Only the simplest case of a 1-dim linear unfolding problem is discussed. The talk
focuses on results. Mathematical details are given in the backup slides.



Introduction

« sketch of a typical 1-dim measurement problem
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O given: noisy data that estimate the observable distibution
@ known: detector response, i.e. efficiency, biases and smearing
@ wanted: an estimate of the true distribution

in the following: linear detector response and counting statistics =¥



The linear model

+« Fredholm integral equation of 1st kind

9(z) =jdy Riz,y)f(y)

O f(y): true density — unknown
» integration over the full range allowed for y
» nature generates values y according to f(y)
O R(z,y): response function of the detector — known
» density in z for fixed y
O g(z): parent distribution of the actual observations — approximately known
» an experiment records [ID measurements z;, ¢ = 1,..., N drawn from g(z)

» the sample size N is a Poisson distributed random variable



The full story?

+ real life is more complicated than Fredholm’s equation

g(z) = J dy Ro(z)
+ | dy Ri(z,y)f(y)

+

+de dy’ Ra(z, v,y )f (y)f (y')
de dy'dy” Ra(z. v, y',y")F () f (v ) (y")

back to looking only at the 2nd term =¥



often used: histogram approximation

@ integral equation =» matrix equation
3
ay :ZRklbl or a=Rb

with =1

1
ak=J dxgm,ij dyf(y) and sz=A—j dzj dy R(z,y)
Ay, Ay, Y Jag, Ay,

» a: histogram of the observed distribution
» b: histogram of the true distribution
» R: response matrix
@ numerically attractive because it requires to handle only finite dimensional matrices
& model dependence from choice of binning
unbinned unfolding =¥



Ansatz: expansion into a complete set of basis functions

« starting point: symmetric positive definite operator T'(y, y’)

T(y,y') = J dr dz’ R(z,y) R(z',y') w(z,z’)

appropriate functional form to address the unfolding problem
any symmetric positive definite weight function w(z, z') is allowed
simplest choice: w(z,z’) = 6(z — z’)

OO00O

optimum choice for IID data with Poisson distributed sample size:
Sz —z')

wie.e) = =7

» in practice use a Maximum Likelihood estimate g(z) instead of g(x)
» asymptotic properties are obtained by setting g(z) = g(x)



« properties of the eigenfunctions by (y) of T'(y,y’)

de' T(y,v)be(y") = A b (y)

@ ordered positive eigenvalues A\ > Ax. 1 >0V k
O w(z,z') x1/N =\, x1/N
O orthonormality
J dy be(y) bi(y) = du
O completeness

D bily) bely’) =8y —y")
k=0



+ the unfolding problem in the basis by (y)

fly)=) Brbily) and g(z)=) Brax(z) with ak(l‘)=deR(z,y) b (y)
k=0 k=0

O note: from now on specialize to

AN 6(1"71"/)
v =50
» which implies
ax(z) ar(z) . ax(z)
Jdm ~ o) ArOu and it follows Jda: g(z) 3 A Bk

employ this to estimate 3 =¥



«» use the Law of Large Numbers and that expectation values are integrals

- alz) 9(@) al@) ] ala)
A’“B’“*Jd”(’” 3(@) *NJdI N 4@ *N<9(z)>

O estimates from a sample of N measurements

ax(T) Y a(z) 5
N< 3(@) >%Z a(m) P

=1

B covariance matrix of B in the limit §(z) — g(z)

» the expansion coefficients contribute independent information (“diagonalization”)
» the variance grows with higher orders



Information content of the expansion coefficients

@ counting experiments: information = number of events = significance? = (n/\/n)?
@ significance? defines the equivalent number of events in B:

B2

Ny, = = B2A
£ Cul(p) Bk
O sum rule in the limit §(z) = g(z):
> Ny=N
k=0

» the observed N events are distributed into independent measurements of the 35
» the individual shares are proportional to 32 and A
» only the low-order coefficient get significant shares

numerical studies =¥



Properties of the introductory example

«» basis functions for true and observed distribution

b, (y) for k=0,1,2,4,8,12 a, (x) for k=0,1,2,4,8,12




«» coefficients for a low statistics measurement
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=» the experimental information is contained in 10 coefficients



< coefficients for a high statistics measurement
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=» the experimental information is contained in 14 coefficients
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Interim summary

@ a recipe for an optimal basis by (y) to parametrize f(y) has been given
» the expansion coefficients are independent
» they are estimated by simple sums of weights over the data

@ all information of the data about the true distribution is contained
in a small number of leading order coefficients

» for smooth functions the higher order terms are small 3, < 1
» higher order terms are suppressed by Ay, < 1
» the variance of the higher order terms grows with 1/A;
@ unfolding has been factorized into two problems
» identifying the available information
» constructing an estimate f () of the true distribution f ()
first steps =¥



Truncated expansion with only the well measured coefficients

m

=) Brbely) > Fly) =) Brbily)
k=0

k=0

O relation between f(y) and f(y) if Bx = Bx
Fw) = | v’ Pu.vf(y) witn Ply.y) Z bely

» P(y,y’) projects f(y) to the subspace spanned by the first m functions
» completeness of the basis by (y) implies P(y,y’) = d(y — y’) for m — oo

@ different points y and y’ are correlated with covariance

m

Cluy) =3 30wy

k=0



Concluding discussion

@ every unfolding result f(y) is characterized by a posterior response P(y, y')
O #(y) will be biased even if the coefficients B are unbiased
O fluctuations in the B can cause unphysical structures o b (y) in f(y)

» estimating f(y) by the truncated expansion may give unsatisfactory results
O the basis by (y) is detector specific

» comparison or combination of experiments not obvious

» check of theoretical predictions can be done for any basis by (y)
@ more sophisticated regularisation schemes try to inject missing information

» adjust expansion coefficients within uncertainties

» invent higher order terms according to some prior knowledge

» modify posterior response and correlation function

» but the fundamental limitations of the truncated expansion always apply



Backup



Orthonormality of the basis by (y)

Application of the eigenvalue equation shows

Ld:jdy bi(y) bk(y):ﬂdydy'bl(y) T(y.y') be(y') = de bi(y) bi(v')

A
Ak
and thus L ﬂ]
kl — 7\19 kl
and it follows
> A AN Iy =0y
» Ar = A;: orthogonal linear combinations of by (y) and b;(y) exist

and with appropriate normalization:

de bi(y) bi(y) = i



Completeness of the basis by (y)

Given an arbitrary function f(y) and it's expansion into by (y)

= Z Br bx(y)
k=0

the coefficients 3 are obtained, using the orthonormality of the by (y), by

[ v ) £ = | ay ety erlbl ZBleybk Zﬁlswm.

Inserting the result for (35 then ylelds

00

Zbk )| dybely) 115 = [ ay' £y’ )3 b

which implies

D bily) be(y) =8y — ')
k=0



Orthogonality of the transformed basis ax ()
According to the definition of a(z) one has

de dz’ ay(z)ay(z")w(z, z') = J dy dy’ dz dz’ R(z, y)by(y)R(z’, y" ) bi(y w(z, ')
— [y ay’ bu() Tw. wBy) = [ dy ) uly) = N

which for the special case
Sz —x’)
g(z)

ax(z) a;(z)

@)

w(z,z') = simplifies to Jda:

and which with one finds

szg( Jd:z: Zﬁzaz )) ZBleI%:Akﬁk



Decomposition of the response matrix

Using the completeness relation and the definition of ax(z) one finds:

Rlz,y) = J dy' R(z,y')5(y — ')



Covariance matrix of f

With the weight functions u (z)

1 a(2) o
w(z) = " ;(I) andthus fj = ;uk(m

one finds, for Poisson distributed samples sizes N with (N (N — 1)) = (N)?,
Cul(B) = (BrBi) — (Br) (B1)
= (N(N — 1)) (w) (w) + (N) (wew) — (N)? (ug) (w)

_ -~ g(z) ap(z)ay(z) ar(z)ai(z) _ dm
=(N) (uyw) = (N) Jdm ) G200 7Jdm O

The last two steps follow in the limit §(z) = g(z) and from the orthogonality of the ay ().



Sum rule

Given the number of equivalent events in 3

In the limit g(z) = g(z) with

one finds

D> Ne=D) Br(Brhe) ZBde:r a (z) =de D Brax(z
k=0 k=0 k=0

k=0 =

)= | deglar =1,

i.e. effectively the total data set of N events is split into disjoint measurements of the (.



Covariance matrix of unfolded distribution

The covariance between two points y and y’ is

Cly.y) = (Fwiw)) - (Fw) Fw))

and with
P =3 Bebely)
one finds o
Cly.y) = f<w> bu()biy )Mfo<ﬁ> (1) bu() By
= Mfo CualB)bx (9)bi(y") = Mio ) by)bily') = i b))



