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Computer Vision algorithms can
now surpass 99% human accuracy
in image recognition tasks.

llija Mihajlovic, 2019

AlphaFold, developed by DeepMind, has
solved the 50-year-old protein folding
problem with remarkable accuracy.

ChatGPT reached 1
million users in 5 days.
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| In 2022, the global Al market was valued at
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The Generalization Gap
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The Generalization Gap
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The Generalization Gap '
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Double Descent

error

1.0 A

0.8

0.6

0.4 -

0.2 -

0.0 A

—_— &

8emp

model complexity




17

Double Descent
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And neither is uniform convergence...

cf. Nagarajan, Vaishnavh, and J. Zico Kolter. "Uniform convergence may be unable to explain generalization in deep learning." NeurlPS, 2019.
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Flatness of the Loss Curve

“Large region in weight space with the property that each
weight vector from that region leads to similar small error*

Hochreiter and Schmidhuber. “Simplifying neural nets by discovering flat minima.“ NIPS, 1995.

Eemp(W + 0V, 8) = Eepnp(W, 5)

| Aan
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Weights and Feature Space

layers




Weights and Feature Space

f(x) = (W, d(x)) = g(wo(z))
input hidden output
layer layers layer

feature extractor predictor




Feature Robustness
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Feature Robustness
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key insight:
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Feature Robustness '

f(2) = b(w, d(x)) = g(wo(x)) pLg
g (W +5wA) §(x)) = g (w ($(a) +040(x)))
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locally constant labels
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Feature Robustness
f(x) =v(w,o(x))
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Relative Flatness
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Relative Flatness
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Second order Taylor decomposnion of feature robustness and taking expectation over a sensibly

chosen distribution on feature matrices results in a Hessian based flathess measure:
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Relative Flatness
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Relative Flatness '

EL(f,S,A) =Eaun = Zf(w(ﬁbfm(xz)) y(Psalwi)) — C(f (i), yi) ‘>

Second order Taylor decomposition of feature robustness and taking expectation over a sensibly
chosen distribution on feature matrices results in a Hessian based flathess measure;
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Neural Collapse

Neural Collapse is a phenomenon at the end of training where last-layer features and classifiers form a simple,
symmetric structure.

- NC1: Variability Collapse: Features within each
class collapse tightly to their class mean.

- NC2: Convergence to Simplex ETF

- NC3: Convergence to self-duality

- NC4: Nearest Class-Center Simplification

NCC =Y + : o
2 e — pe

pLg
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Neural Collapse is a phenomenon at the end of training where last-layer features and classifiers form a simple,
symmetric structure.
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Grokking
Algorithmic modular task: <x> <op> <y> = <x o y>, e.g., (40 + 8) mod 97 = 48

Modular Division (training on 50% of data)
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Grokking
Algorithmic m

Relative Flatness

400000 A

350000 -

300000 -

250000 -

200000 -

150000 A

100000 A

50000 -

Relative flatness

Training accuracy
Validation accuracy
Neural collapse clustering

PO 7YY

- 100

- 80

- 60

- 40

- 20

10!

102 ' 103
Training steps (log scale)

104

10°

Accuracy / Neural Collapse Clustering




—

INTELLIGENCE

INSTITUTE FOR
MACHINE LEARNING
AND ARTIFICIAL

Causal Interventions




Neural Collapse

(a) Training/validation accuricies
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Relative Flatness
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Conclude:

Relative flatness, rather than Neural Collapse, is necessary to Generalization.
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Relative flatness + LLMs

1. LLM intervention:

- Relative Flatness-Regularized Training, Placement, Diagnostic tool...
2. Cross lingual Generalization

-A, Band C?
3. Relative flatness + alignment

-D, E and F?
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