

Flattening the Path to Generalization in LLMs

Ting Han and Prof. Dr. Michael Kamp

Lamarr Institute, TU Dortmund and Institute of Artificial Intelligence in Medicine (IKIM)

Partner institutions:

Institutionally funded by:

Bundesministerium für Forschung, Technologie und Raumfahrt Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

AI/LLMs are EVERYWHERE!



Machine Learning

AlphaFold, developed by DeepMind, has solved the 50-year-old protein folding problem with remarkable accuracy.

ChatGPT reached 1 million users in 5 days.

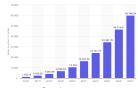
Machine Learning

AlphaFold, developed by DeepMind, has solved the 50-year-old protein folding problem with remarkable accuracy.

ChatGPT reached 1 million users in 5 days.

Al-powered personalization increases sales by 10-15%.

Machine Learning



In 2022, the global AI market was valued at over \$100 billion and is projected to reach \$190 billion by 2025.

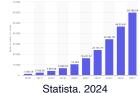
Statista, 2024

AlphaFold, developed by DeepMind, has solved the 50-year-old protein folding problem with remarkable accuracy.

ChatGPT reached 1 million users in 5 days.

Al-powered personalization increases sales by 10-15%.

Machine Learning



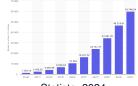
In 2022, the global AI market was valued at over \$100 billion and is projected to reach \$190 billion by 2025.

AlphaFold, developed by DeepMind, has solved the 50-year-old protein folding problem with remarkable accuracy.

ChatGPT reached 1 million users in 5 days.

Al-powered personalization increases sales by 10-15%.

Machine Learning



In 2022, the global AI market was valued at over \$100 billion and is projected to reach \$190 billion by 2025.

Statista, 2024

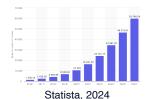
AlphaFold, developed by DeepMind, has solved the 50-year-old protein folding problem with remarkable accuracy.

ChatGPT reached 1 million users in 5 days.

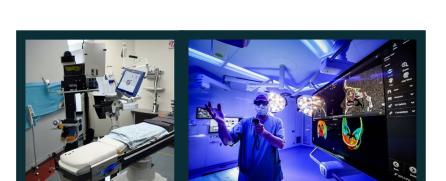
Al-powered personalization increases sales by 10-15%.



Machine Learning

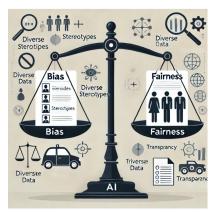


In 2022, the global AI market was valued at over \$100 billion and is projected to reach \$190 billion by 2025.



Are AI/LLMs TRUELY everywhere? Not yet!

Bias & Fairness

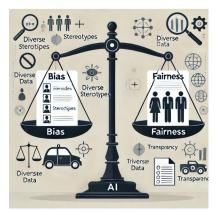


Private data recovery

Are AI/LLMs TRUELY everywhere?

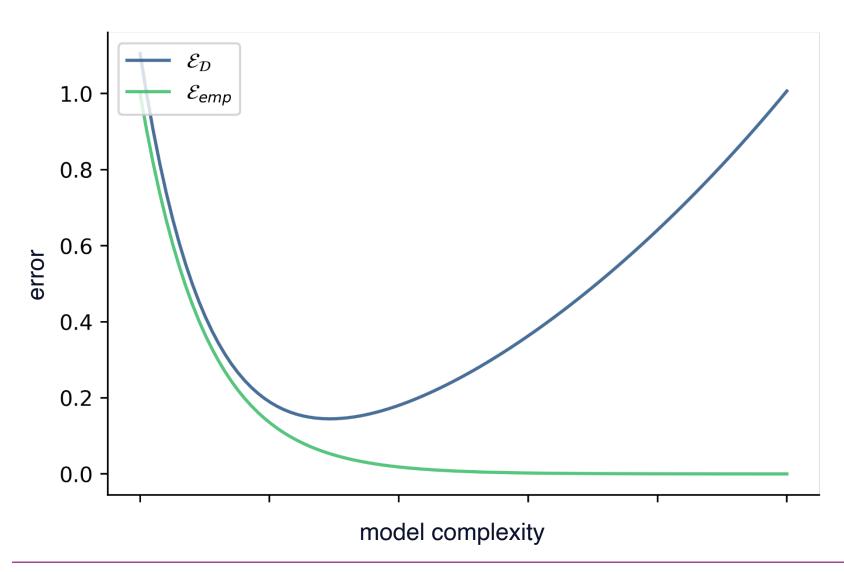
Trustwhothiess & Responsibility

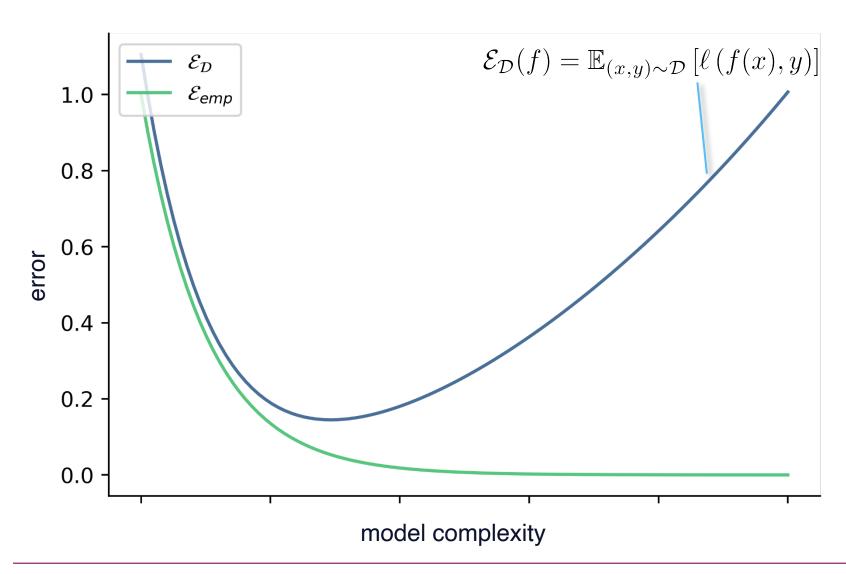
Bias & Fairness

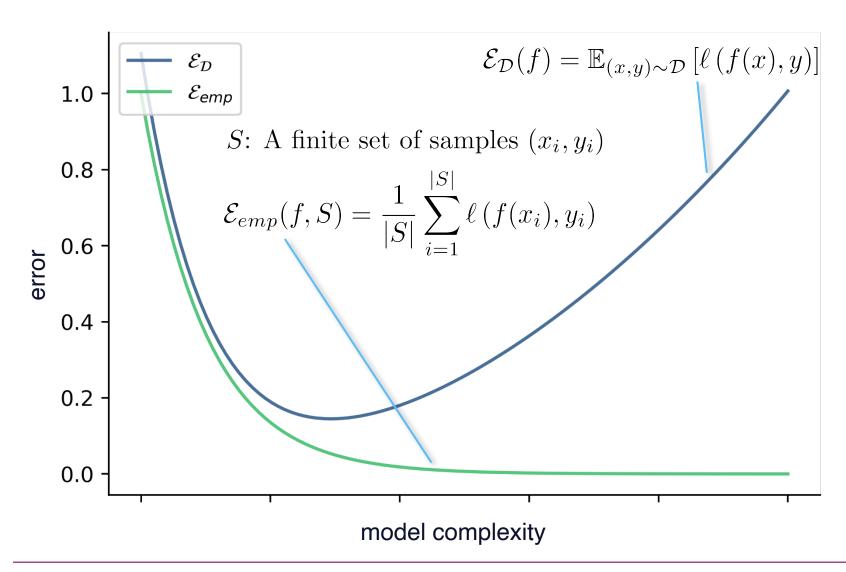


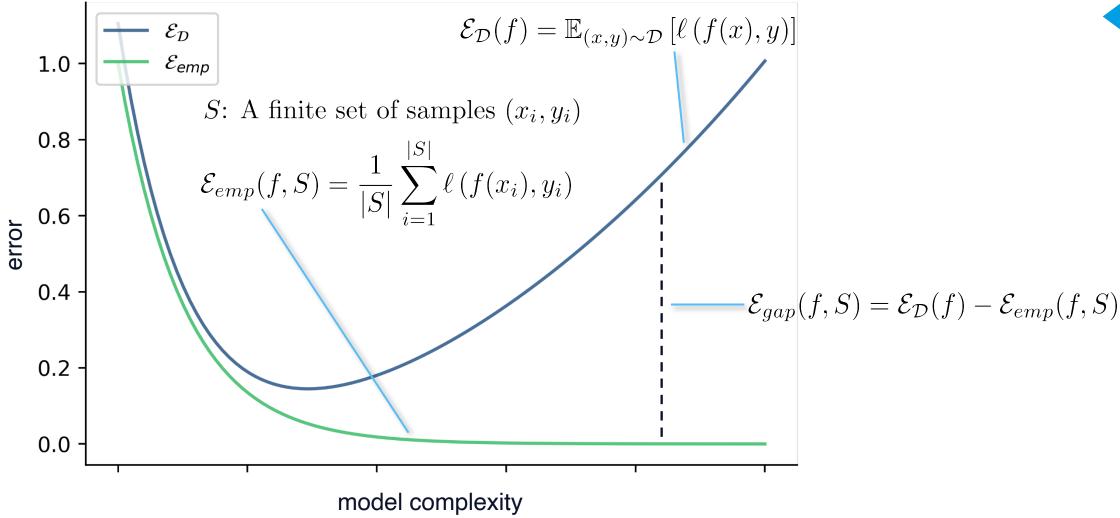
Private data recovery

Generalization









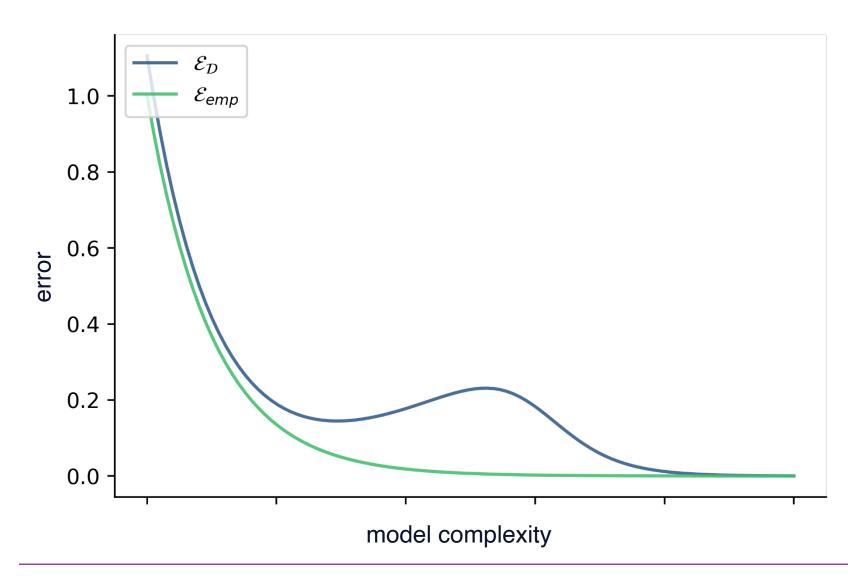
1.0
$$\mathcal{E}_{\mathcal{D}} \qquad \qquad \mathcal{E}_{\mathcal{D}} \qquad \qquad \mathcal{E}_{\mathcal{D}} \left[\ell \left(f(x), y \right) \right] = \mathbb{E}_{x \sim \mathcal{D}_{x}} \left[\ell \left(f(x), y \right) \right]$$

$$S: \text{ A finite set of samples } (x_{i}, y_{i})$$

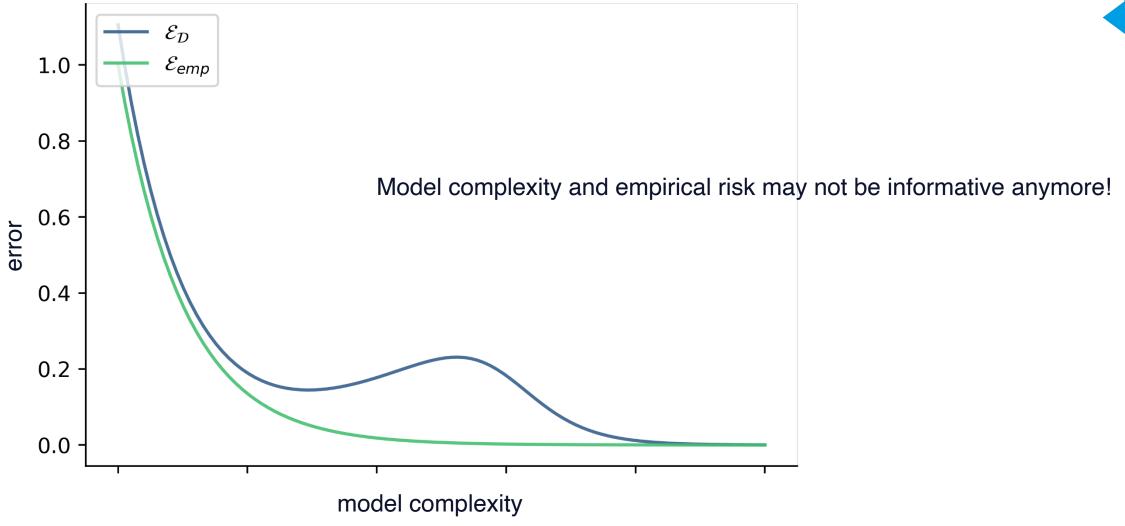
statistical learning theory:

Guarantee: with probability :
$$\delta$$
 $\mathcal{E}_{\mathcal{D}} \leq \mathcal{E}_{emp} + \sqrt{\frac{1}{N} \left(\mathcal{C}(\mathcal{H}) \log \frac{1}{\delta} \right)}$ $\mathcal{C}(\mathcal{H})$: complexity of model class \mathcal{H} model complexity

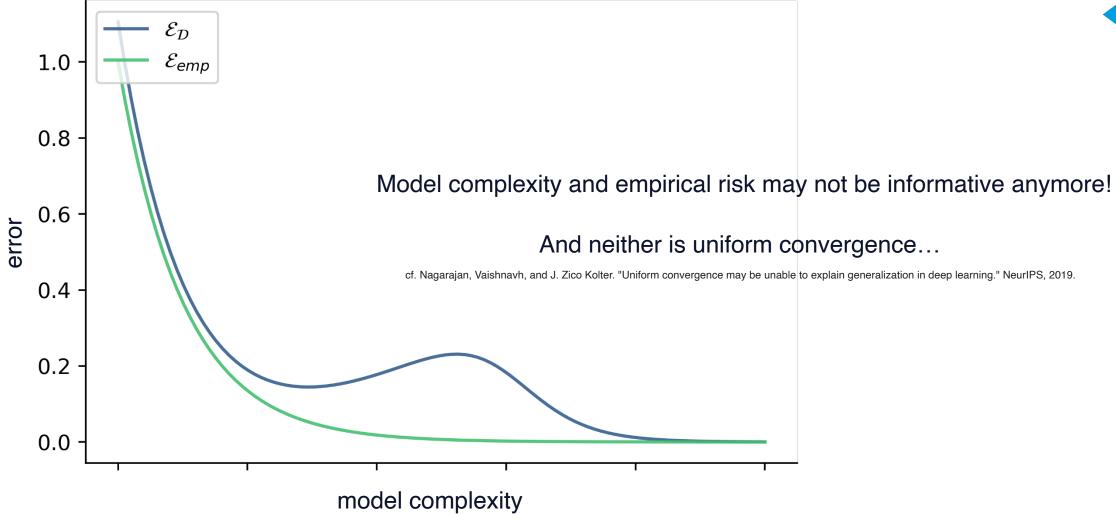
Double Descent



Double Descent



Double Descent



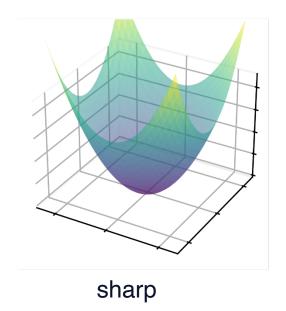
Feature Robustness and Relative Flatness

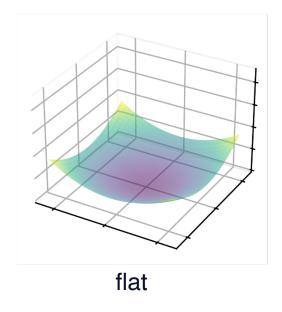
Flatness of the Loss Curve

"Large region in weight space with the property that each weight vector from that region leads to similar small error"

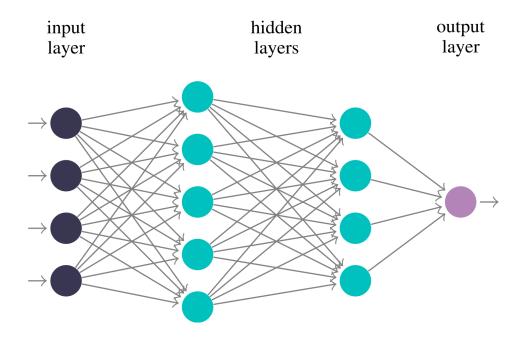
Hochreiter and Schmidhuber. "Simplifying neural nets by discovering flat minima." NIPS, 1995.

$$\mathcal{E}_{emp}(\mathbf{w} + \delta \mathbf{v}, S) \approx \mathcal{E}_{emp}(\mathbf{w}, S)$$



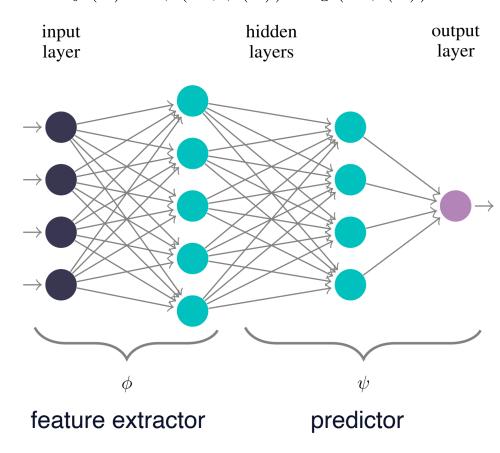


Weights and Feature Space



Weights and Feature Space

$$f(x) = \psi(\mathbf{w}, \phi(x)) = g(\mathbf{w}\phi(x))$$



key insight:

$$g((\mathbf{w} + \delta \mathbf{v})\phi(x))$$

key insight:

$$g((\mathbf{w} + \delta \mathbf{v})\phi(x)) = g((\mathbf{w} + \delta \mathbf{w}A)\phi(x))$$

$$\phi(x) \in \mathbb{R}^m, \ A \in \mathbb{R}^{m \times m}$$

key insight:

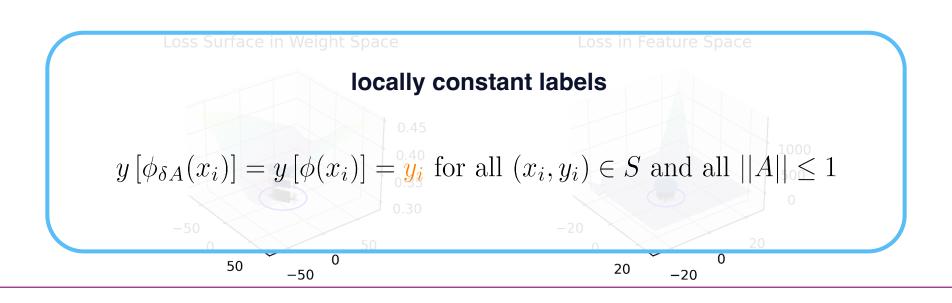
$$g((\mathbf{w} + \delta \mathbf{v})\phi(x)) = g((\mathbf{w} + \delta \mathbf{w}A)\phi(x))$$
$$= g(\mathbf{w}(\phi(x) + \delta A\phi(x)))$$
$$\phi(x) \in \mathbb{R}^m, \ A \in \mathbb{R}^{m \times m}$$

$$f(x) = \psi(\mathbf{w}, \phi(x)) = g(\mathbf{w}\phi(x))$$
$$g((\mathbf{w} + \delta \mathbf{w} A) \phi(x)) = g(\mathbf{w} (\phi(x) + \delta A \phi(x)))$$

$$\mathcal{E}_{emp}(\mathbf{w} + \delta \mathbf{w} A, \phi(S)) - \mathcal{E}_{emp}(\mathbf{w}, \phi(S)) = \frac{1}{|S|} \sum_{i=1}^{|S|} \ell(\psi(\mathbf{w}, \phi_{\delta A}(x_i)), y_i) - \ell(\psi(\mathbf{w}, \phi(x_i)), y_i)$$

flatness

feature robustness



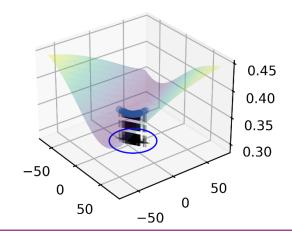
$$f(x) = \psi(\mathbf{w}, \phi(x)) = g(\mathbf{w}\phi(x))$$
$$g((\mathbf{w} + \delta \mathbf{w} A) \phi(x)) = g(\mathbf{w} (\phi(x) + \delta A \phi(x)))$$

$$\mathcal{E}_{emp}(\mathbf{w} + \delta \mathbf{w} A, \phi(S)) - \mathcal{E}_{emp}(\mathbf{w}, \phi(S)) = \frac{1}{|S|} \sum_{i=1}^{|S|} \ell(\psi(\mathbf{w}, \phi_{\delta A}(x_i)), y_i) - \ell(\psi(\mathbf{w}, \phi(x_i)), y_i)$$

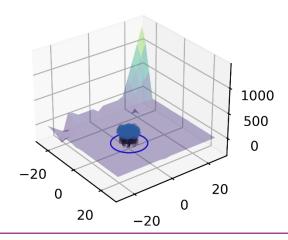
flatness

feature robustness

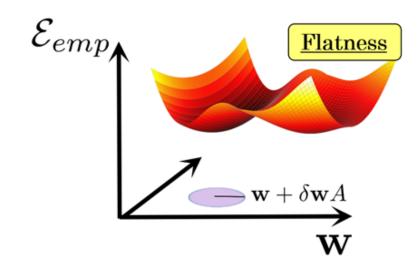
Loss Surface in Weight Space

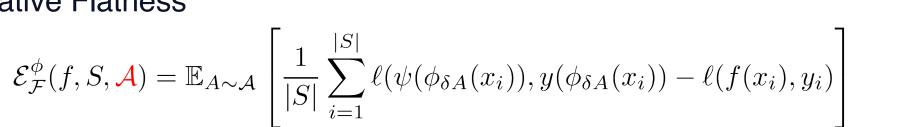


Loss in Feature Space

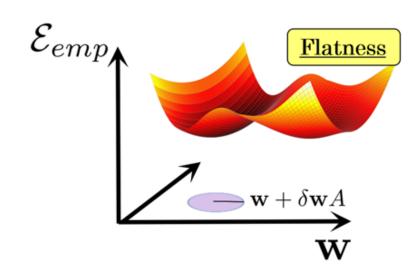


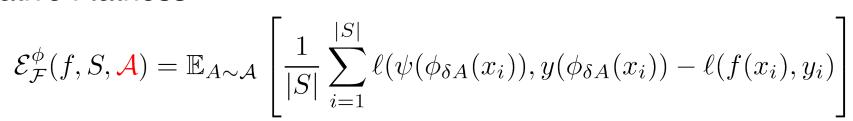
$$\mathcal{E}_{\mathcal{F}}^{\phi}(f, S, \mathcal{A}) = \mathbb{E}_{A \sim \mathcal{A}} \left[\frac{1}{|S|} \sum_{i=1}^{|S|} \ell(\psi(\phi_{\delta A}(x_i)), y(\phi_{\delta A}(x_i)) - \ell(f(x_i), y_i)) \right]$$





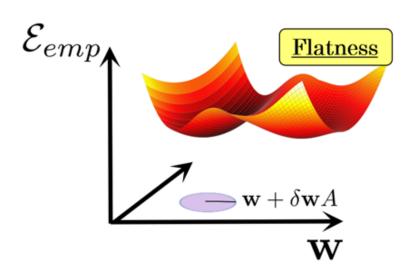
Second order **Taylor decomposition** of **feature robustness** and taking expectation over a sensibly chosen distribution on feature matrices results in a Hessian based flatness measure:





Second order **Taylor decomposition** of **feature robustness** and taking expectation over a sensibly chosen distribution on feature matrices results in a Hessian based flatness measure:

$$H_{s,s'}(\mathbf{w},\phi(S)) = \left[\frac{\partial^2 \mathcal{E}_{emp}(\mathbf{w},\phi(S))}{\partial w_{s,t} \partial w_{s',t'}}\right]_{1 \le t,t' \le m}$$
$$\mathbf{w}_s = (w_{s,t})_t \in \mathbb{R}^{1 \times m}$$

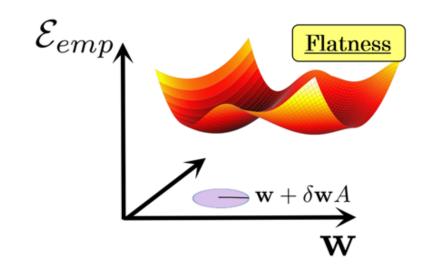


$$\mathcal{E}_{\mathcal{F}}^{\phi}(f, S, \mathcal{A}) = \mathbb{E}_{A \sim \mathcal{A}} \left[\frac{1}{|S|} \sum_{i=1}^{|S|} \ell(\psi(\phi_{\delta A}(x_i)), y(\phi_{\delta A}(x_i)) - \ell(f(x_i), y_i)) \right]$$

Second order **Taylor decomposition** of **feature robustness** and taking expectation over a sensibly chosen distribution on feature matrices results in a Hessian based flatness measure:

$$H_{s,s'}(\mathbf{w},\phi(S)) = \left[\frac{\partial^2 \mathcal{E}_{emp}(\mathbf{w},\phi(S))}{\partial w_{s,t}\partial w_{s',t'}}\right]_{1 \le t,t' \le m}$$
$$\mathbf{w}_s = (w_{s,t})_t \in \mathbb{R}^{1 \times m}$$

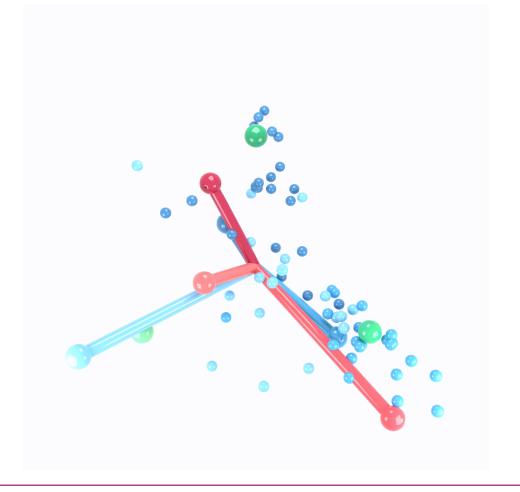
$$K_{Tr}^{\phi}(\mathbf{w}) = \sum_{s,s'=1}^{d} \langle \mathbf{w}_s, \mathbf{w}_{s'} \rangle \cdot Tr(H_{s,s'}(\mathbf{w}, \phi(S)))$$



Neural Collapse is a phenomenon at the end of training where last-layer features and classifiers form a simple, symmetric structure.

- NC1: Variability Collapse: Features within each class collapse tightly to their class mean.
 - NC2: Convergence to Simplex ETF
 - NC3: Convergence to self-duality
 - NC4: Nearest Class-Center Simplification

$$NCC := \sum_{c \neq c'} \frac{V_c + V_{c'}}{2\|\mu_c - \mu_{c'}\|^2}$$

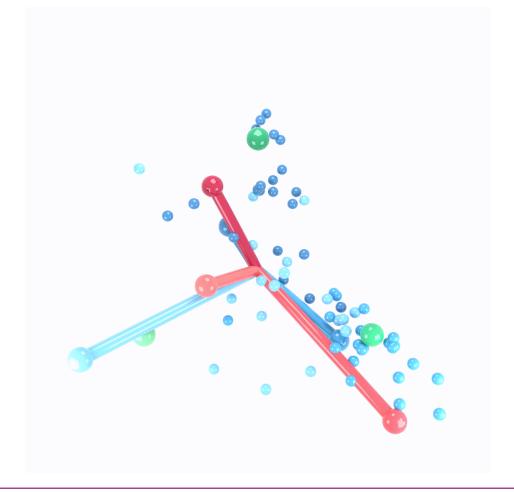


Neural Collapse is a phenomenon at the end of training where last-layer features and classifiers form a simple, symmetric structure.

- NC1: Variability Collapse: Features within each class collapse tightly to their class mean.
 - NC2: Convergence to Simplex ETF
 - NC3: Convergence to self-duality
 - NC4: Nearest Class-Center Simplification

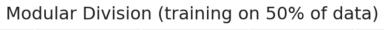
$$NCC := \sum_{c \neq c'} \frac{V_c + V_{c'}}{2\|\mu_c - \mu_{c'}\|^2}$$

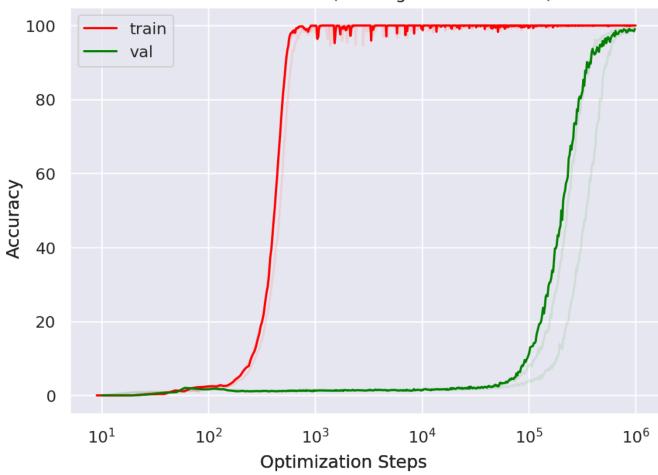
Neural Collapse and Generalization

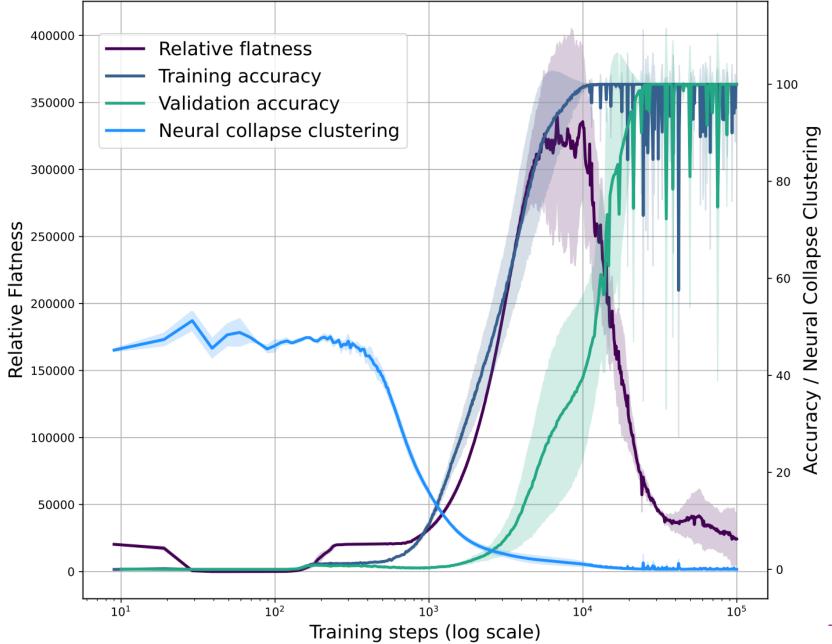


Grokking

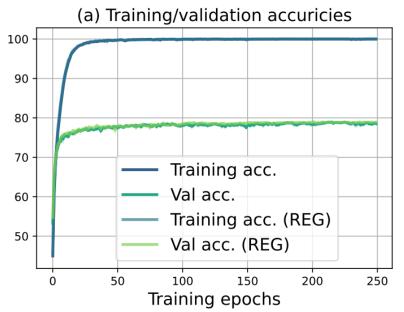
Grokking

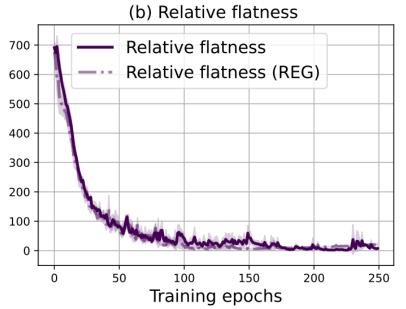


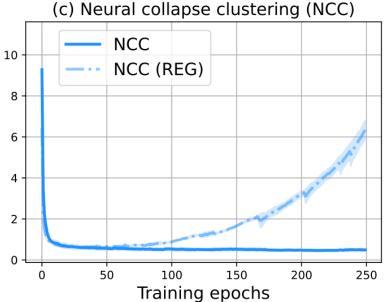




Causal Interventions

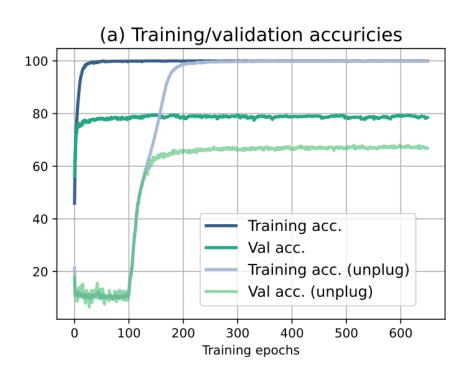


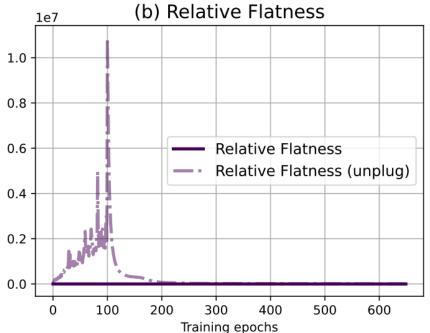




$$\mathcal{L}_{\text{NC_REG}} = \mathcal{L}_{\text{CE}} - \lambda \cdot \text{NCC}$$

$$\text{NCC} := \sum_{c \neq c'} \frac{V_c + V_{c'}}{2\|\mu_c - \mu_{c'}\|^2}$$





$$\mathcal{L}_{ ext{NC_RF}} = \mathcal{L}_{ ext{CE}} - \lambda * \kappa_{Tr}^{\phi}(\mathbf{w})$$

$$\kappa_{\mathrm{Tr}}^{\phi}(\mathbf{w}) := \sum_{s,s'=1}^{d} \langle \mathbf{w}_s, \mathbf{w}_{s'} \rangle \cdot \mathrm{Tr}(H_{s,s'}(\mathbf{w}, \phi(S)))$$

Conclude:

Relative flatness, rather than Neural Collapse, is necessary to Generalization.

Relative flatness + LLMs

- 1. LLM intervention:
 - Relative Flatness-Regularized Training, Placement, Diagnostic tool...
- 2. Cross lingual Generalization
 - -A, B and C?
- 3. Relative flatness + alignment
 - -D, E and F?

Thanks and QA?

Partner institutions:

Institutionally funded by:

Bundesministerium für Forschung, Technologie und Raumfahrt Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

