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LANGSAMP- Motivation & Background

-”f 1 I
1 T i i
) o) ) o) () | () (o) () (o) ()
N O T T T N OO O
]

o Early crosslingual models like XLM leverage language embeddings.
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o Early crosslingual models like XLM leverage language embeddings.

o learnable vectors
e capture language-specific information
o useful for guiding generation, e.g., MT
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Recent mPLMs like XLM-R remove such language embeddings.
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Recent mPLMs like XLM-R remove such language embeddings.

o What's bad about such removal?
o The contextual token embeddings have to encode all language-specific
information
o This may hinder language neutrality
e Language neutrality is usually important for multilinguality, e.g.,
(zero-shot) crosslingual transfer.
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@ What's good about such removal?

o Universal text encoder without requiring language IDs as input
o The backbone model can be used effectively for downstream tasks
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LANGSAMP- Motivation & Background

@ Why not integrate language/script embeddings wisely so that

e representations’ language-neutrality is improved
o the backbone remains the same as common mPLMs

?
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LANGSAMP- Modeling

We add the language and script embedding to the outputs of the
Transformer blocks at token position i: 0; = h; + ElLang + EScriPt,
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LANGSAMP- Downstream Fine-tuning

Note: language/script embeddings are not required to obtain the final
Transformer output, i.e., the final contextual token embeddings.
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LANGSAMP- Downstream Fine-tuning

Note: language/script embeddings are not required to obtain the final
Transformer output, i.e., the final contextual token embeddings.

@ No language or script IDs as input needed in fine-tuning.

@ The backbone remains the same as most mPLMs.
@ It can be fine-tuned in the standard way in NLP pipelines.

o Token (and position) embeddings + Transformer blocks as backbone.
o A task-specific classifier is added on top of it.
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Main Results

o Continued pretraining XLM-R on Glot500-c
o head: the language covered by XLM-R.
o tail: the language not covered by XLM-R

tail head Latn non-Latn all
Baseline LANGSAMP“ Baseline LANGSAMP‘ Baseline LANGSAMP‘ Baseline LANGSAMP‘ Baseline LANGSAMP

SR-B 36.9(0.0) 39.5(0.0) |60.6 (0.0) 61.3(0.0) [40.7 (0.0) 42.8 (0.0) |51.2 (0.0) 53.5(0.0) |42.9 (0.0) 45.1 (0.0)
SR-T  56.9 (0.0) 58.6 (0.0) |74.8 (0.0) 76.1(0.0) |67.5(0.0) 68.7 (0.0) |73.7 (0.0) 75.6 (0.0) |69.7 (0.0) 71.1 (0.0)
Taxi1500 47.1 (4.8) 50.8 (2.4) |59.9 (2.9) 61.2 (1.2) [48.2 (4.6) 51.7 (2.1) |58.8 (3.1) 60.1 (1.7) |50.3 (4.2) 53.4 (2.0)
SIB200 69.0 (1.4) 70.2 (1.9) |82.2 (1.4) 82.6 (1.2) |72.1 (1.3) 73.1 (1.8) |81.1(1.5) 817 (1.2) |75.0 (1.3) 75.9 (1.6)
NER  60.1(0.6) 60.8(0.8) |64.0 (0.6) 64.1(0.6) |67.0 (0.5) 67.6 (0.6) |53.9 (0.7) 53.9 (0.5) [62.2 (0.5) 62.6 (0.6)
POS  61.3(1.0) 61.4(0.9) |76.0 (0.4) 76.2 (0.4) |74.6 (0.5) 745 (0.4) |66.2 (1.0) 66.8 (0.8) |71.5 (0.6) 71.6 (0.5)
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@ Both non-Latin and Latin languages benefit from LANGSAMP.

@ Improvements can vary slightly across different task types.
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SR-B SR-T Taxi1500 SIB200 NER POS
tail head all tail head all tail head all tail head all tail head all tail head all
vanilla model 11.9 56.4 23.2 46.0 77.7 68.6 18.1 58.6 28.4 56.1 83.0 68.3 55.1 62.8 59.3 49.9 75.7 67.8
w/ Etre 13.1 57.9 24.5 49.1 79.0 70.5 18.3 58.5 28.5 57.2 82.7 68.8 55.2 63.0 59.5 49.9 75.8 67.8
w/ ESeript 12,5 57.4 23.9 48.3 78.4 69.8 18.5 57.0 28.2 56.6 82.1 68.2 55.1 62.4 59.0 50.8 76.2 68.4

w/ E"" and E* 13.4 58.7 24.9 49.1 79.5 70.8 20.6 58.8 30.3 57.9 83.0 69.3 54.9 61.6 58.6 49.7 75.6 67.6
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Visualization of Auxiliary Embeddings with PCA
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@ Similar or related languages/scripts are located close to each other.
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@ Similar or related languages/scripts are located close to each other.

@ This shows that the auxiliary embeddings capture language- and
script-specific information.

Yihong Liu

LANGSAMP September 24, 2025 13 /17



UDWIG-

MAXIMILIANS-
UNIVERSITAT
MONCHEN

Similarity of Parallel Sentences Across Languages [fil]

We selected 10 languages: eng__Latn, rus__Cyrl, zho__Hani, arb_Arab,

hin_Deva, jpn_Jpan, tur_Latn, spa_Latn, ind_Latn, and swa_Latn.
Pairwise cosine similarity of sentence representations is computed (baseline
and LANGSAMP). Improvement (by percentage) is shown.

eng_Latn- 0.0
rus Cyrl- 11 00
zho_Hani- 22 15 00

4
arb_Arab °

hin Deva- 04 16 07

jpnJpan- 19 23
tur_latn- 0.8 09
spa_latn- 07 07
ind_latn- 13 13

swh_latn- 10 12
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Instead of always using English, we select the language as source language
whose embedding is most cosine-similar to the target language for zero-shot
crosslingual transfer.

tail head Latn non-Latn all

English  Source ‘ English  Source ‘ English  Source ‘ English Source‘ English  Source

Taxil500 47.3 48.3 59.1 60.3 48.4 49.0 58.1 60.5 50.2 51.2
SIB200 67.9 67.9 81.2 81.6 71.0 71.1 80.3 80.6 74.0 74.2

NER 61.2 61.7 64.1 65.6 67.5 66.9 54.6 58.5 62.8 63.8
POS 63.2 53.8 77.0 72.3 75.5 68.4 68.1 63.6 72.8 66.6
Yihong Liu LANGSAMP September 24, 2025 15 /17
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Instead of always using English, we select the language as source language
whose embedding is most cosine-similar to the target language for zero-shot
crosslingual transfer.

tail head Latn non-Latn all

English  Source ‘ English  Source ‘ English  Source ‘ English Source‘ English  Source

Taxil500 47.3 48.3 59.1 60.3 48.4 49.0 58.1 60.5 50.2 51.2
SIB200 67.9 67.9 81.2 81.6 71.0 71.1 80.3 80.6 74.0 74.2
NER 61.2 61.7 64.1 65.6 67.5 66.9 54.6 58.5 62.8 63.8
POS 63.2 53.8 77.0 72.3 75.5 68.4 68.1 63.6 72.8 66.6

@ This shows that language embeddings facilitate the selection of optimal
source languages for more effective crosslingual transfer.
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LangSAMP: a multilingual pretraining approach that adds auxiliary
language and script embeddings after transformer layers to encourage

language-neutral representations.
o Simple yet effective for improving language-neutrality.
o Consistent gains over baselines across downstream tasks.
o Auxiliary embeddings may be leveraged as useful byproducts.

Possible Future Directions:

o Further steer middle-layer representations toward neutrality using
parallel data with contrastive objectives.

@ Leverage embeddings for controlled multilingual generation in
decoder-only or encoder-decoder models.
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Thank you for your attention!
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