

Efficient Communication between AI and Domain Experts

How to?

Jens Buß & Ramsés Sanchéz & Sebastian Buschjäger

Partner institutions:

IML

Institutionally funded by:

Ministerium für

Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Domain Expert:

Astrophysicist

The Players

Black Hrole

(~) = 4,200 M

looking for an interesting Use-case for ML

646

AI Expert:

Computer Scientist

Alt it - F = So

Companzer

aiming to use ML to achieve analysis objective!

Typical Approach in Science

Specific Problem	Mathematical Modelling	Mathematical Algorithm	Implementation	
• A trader wants to transport her goods from A to B	• We map streets and cities to a Graph	 We formulate an optimization problem on top of the Graph We search for an optimization 	• We implement the algorithm in a concrete system (e.g. Google Maps)	

AI: Same general approach but with extra steps!

Typical Approach in AI

Fact: Some problems are difficult to describe mathematically

But: For some problems it is easy to give examples (= data) of what we want

Typical Approach in AI – A closer look

Efficient Communication between AI and domain experts

<u>Obviously</u>

- A domain expert who knows the entire AI pipeline does not need an AI expert
- An AI expert who knows the entire real-world use-case does not need a domain expert

But clearly: Nobody knows everything

So, what should an AI expert tell the domain expert and vice-versa?

Which information are needed for the players to collaborate?

Domain Expert: Astrophysicist

Which information are needed for the players to collaborate?

- Real-World use-case (Motivation)
- Performance metric for real-world task
- o Downstream Task
- Performance metric for real-world task
- Data type: e.g. time series, images, tabular
- Learning Task
- o Ground Truth / Labels
- Applicable learning algorithms and their properties

Efficient Communication between AI and domain experts

As domain expert: We have to communicate some information about the real-world task its core metrics and the data

As AI expert: We have to communicate <u>some</u> information about the AI pipeline, data processing and models used

Binary Classification

A task where the model predicts one of two possible classes (labels) based on input data.

Examples

A spam filter that classifies emails as either "spam" or "not spam".

A model that classifies whether a detected particle in an airshower telescope is either a gamma or a hardronic event.

Multi-class Classification

A task where the model predicts one class out of several possible classes.

Examples

An image recognition system that classifies a picture as either "cat," "dog," or "bird".

A model used in a gamma-ray observatory to classify incoming particles as either gamma-rays, hardrons (e.g. protons and heavy nucliei), electrons, or muons, based on their energy and interaction signatures.

Multi-label Classification

A task where the model predicts multiple labels (classes) for each input, where each label is independent of others.

Examples

A movie recommendation system where each movie can have multiple genres (e.g., "Action," "Comedy," and "Adventure").

A model in an air shower experiment (detecting cosmic rays) that labels each particle as both a proton and a secondary electron or muon, depending on the multiple components involved in the event.

Regression

A task where the model predicts a continuous value (usually real numbers) based on input data.

Examples

A house price prediction model that takes in features like square footage, number of bedrooms, and location, and predicts the price.

A model that estimates the energy of a gamma ray based on its shower's light-yield and spacial properties.

Forecasting

A specialized form of regression where the model predicts future values based on historical data.

Examples

A stock price prediction model that uses past stock prices to forecast future stock prices.

A model that forecasts the solar activity cycle (e.g., sunspots or solar flares) based on historical data, helping predict solar storms.

Reinforcement Learning

A task where an agent learns to make decisions by interacting with an environment and receiving rewards or penalties for its actions.

Examples

A self-driving car learning to navigate by making decisions and receiving rewards for avoiding obstacles and reaching its destination safely.

A robotic rover on Mars that uses reinforcement learning to navigate the planet's surface and explore geological features, optimizing its path for maximum exploration.

Generative Models

Models that learn to generate new data similar to the input data, such as images, text, or music.

Examples

A model that generates realistic images of people who don't exist, similar to the images found in GAN (Generative Adversarial Networks).

A Generative Adversarial Network (GAN) generating synthetic data of neutrino interactions in a detector, based on patterns in real event data, to simulate rare particle interactions that are hard to observe directly.

Clustering

A task where the model groups data points into clusters based on similarities, without any predefined labels.

Examples

A customer segmentation model that groups customers into clusters based on purchasing behavior (e.g., "high spenders," "frequent buyers," etc.).

A model that clusters galaxies into different groups based on their morphology (e.g., elliptical, spiral, irregular)

Efficient Communication between AI and Domain Experts

How to do it!

Jens Buß & Ramsés Sanchéz & Sebastian Buschjäger

Partner institutions:

Institutionally funded by:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Efficient Communication between AI and domain experts

OR RATHER how NOT to do it!

Jens Buß & Ramsés Sanchéz & Sebastian Buschjäger

Partner institutions:

IML

Institutionally funded by:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

für Bildung und Forschung

Vision: Al-driven Gamma-ray Astronomy

Help us to improve our data analysis with AI. You're the experts!

Vision: Al-driven Gamma-ray Astronomy

Help us to improve our data analysis with AI. You're the experts!

Airshowers

Detection principle

This is what we are looking for...

Spectral energy distributions (SEDs)

This is what we are looking for... Lightcurves

Bad Moon Rising?

SiPM

- No HV (~70V)
- PDE
 - comparable to PMTs
- Robust

PMT

The Experiment

35

Simulations

We don't have a testbeam so we need simulations to know the truth

CORSIKA Samples				
Simulation settings	Proton	Gamma		
Energy range	$100{\rm GeV}$ to $200{\rm TeV}$	$200{\rm GeV}$ to $50{\rm TeV}$		
Slope of the simulated spectrum	-2.7	-2.7		
Viewcone	5°	0°		
Event reuse	20			
Maximum impact parameter	$400\mathrm{m}$	$270\mathrm{m}$		
Zenith range	(0-30)°			
Azimuth range	$(0-0)^{\circ}$			
Atmosphere	Atmospheric Model 11 (MAGIC winter)			
Number of resulting events	780046520	18000000		

Which Information did you gather?

- Real-World use-case (Motivation)
- Performance metric for real-world task
- Downstream Task
- Performance metric for real-world task
- Data type: e.g. time series, images, tabular
- Learning Task
- o Ground Truth / Labels

Assessment of the provided information

Overwhelming

© Lamarr Institute for Machine Learning and Artificial Intelligence

Useful