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Domain Expert:
Astrophysicist

AI Expert:
Computer Scientist

The Players

aiming to use ML to achieve
analysis objective!

looking for an interesting 
Use-case for ML



Typical Approach in Science
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• We implement the 
algorithm in a 
concrete system 
(e.g. Google Maps)

Implementation

• We formulate an 
optimization 
problem on top of 
the Graph

• We search for an 
optimization 
algorithm

Mathematical 
Algorithm

• We map streets 
and cities to a 
Graph

Mathematical 
Modelling

• A trader wants to 
transport her 
goods from A to B

Specific 
Problem

AI: Same general approach but with extra 
steps!



Typical Approach in AI
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• Implement the 
optimization 
algorithm in a 
computer and let 
it search for the 
best model given 
the data

Implementation

• Choose a model 
class (linear, tree, 
deep learning, ...)

• Formulate an 
optimization 
algorithm that 
finds the optimal 
model for the data 
and tasks

Model + 
Optimization

• Given a picture, 
predict if there is 
a cat or not

Formulate a 
Learning Task

• Search a lot of 
pictures with cats 
and other animals

Gather Data

• Distinguish 
between a cat and 
not a cat

Specific 
Problem

Fact: Some problems are difficult to describe mathematically

But: For some problems it is easy to give examples (= data) of what we want

▪ Downstream 
task

▪ AI Training
▪ Model 

Deployment



Typical Approach in AI – A closer look
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Efficient Communication between AI and domain experts
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Obviously
- A domain expert who knows the entire AI pipeline does not need an AI expert
- An AI expert who knows the entire real-world use-case does not need a domain expert

But clearly: Nobody knows everything

So, what should an AI expert tell the domain expert and vice-versa?

Here domain and AI experts typically meet
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Which information are 
needed for the players to 

collaborate?
Domain Expert:
Astrophysicist

AI Expert:
Computer Scientist
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Which information are 
needed for the players to 

collaborate?
Domain Expert:
Astrophysicist

AI Expert:
Computer Scientist

o Real-World use-case (Motivation)

o Performance metric for real-world task

o Downstream Task

o Performance metric for real-world task

o Data type: e.g. time series, images, tabular

o Learning Task

o Ground Truth / Labels

o Applicable learning algorithms and their 

properties



Efficient Communication between AI and domain experts
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As domain expert: We have to communicate some information about the real-world task its core metrics and the data

As AI expert: We have to communicate some information about the AI pipeline, data processing and models used

▪ Real-World Use case

§ AI Reasearch landscape

Right amount of context



An (incomplete) Overview of Learning Tasks
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An (incomplete) Overview of Learning Tasks
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Binary Classification

A task where the model predicts one of two possible 
classes (labels) based on input data.

Examples

A spam filter that classifies emails as either "spam" 
or "not spam". 

A model that classifies whether a detected particle in 
an airshower telescope is either a gamma or a 
hardronic event.



An (incomplete) Overview of Learning Tasks

12/9/2024© Lamarr Institute for Machine Learning and Artificial Intelligence 13

Multi-class Classification

A task where the model predicts one class out of 
several possible classes.

Examples

An image recognition system that classifies a picture 
as either "cat," "dog," or "bird".

A model used in a gamma-ray observatory to classify 
incoming particles as either gamma-rays, hardrons
(e.g. protons and heavy nucliei), electrons, or muons, 
based on their energy and interaction signatures.



An (incomplete) Overview of Learning Tasks
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Multi-label Classification

A task where the model predicts multiple labels 
(classes) for each input, where each label is 
independent of others.

Examples

A movie recommendation system where each movie 
can have multiple genres (e.g., "Action," "Comedy," 
and "Adventure").

A model in an air shower experiment (detecting 
cosmic rays) that labels each particle as both a 
proton and a secondary electron or muon, depending 
on the multiple components involved in the event.



An (incomplete) Overview of Learning Tasks
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Regression

A task where the model predicts a continuous value 
(usually real numbers) based on input data.

Examples

A house price prediction model that takes in features 
like square footage, number of bedrooms, and 
location, and predicts the price.

A model that estimates the energy of a gamma ray 
based on its shower‘s light-yield and spacial
properties.



An (incomplete) Overview of Learning Tasks
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Forecasting

A specialized form of regression where the model 
predicts future values based on historical data.

Examples

A stock price prediction model that uses past stock 
prices to forecast future stock prices.

A model that forecasts the solar activity cycle (e.g., 
sunspots or solar flares) based on historical data, 
helping predict solar storms.



An (incomplete) Overview of Learning Tasks
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Reinforcement Learning

A task where an agent learns to make decisions by 
interacting with an environment and receiving 
rewards or penalties for its actions.

Examples

A self-driving car learning to navigate by making 
decisions and receiving rewards for avoiding 
obstacles and reaching its destination safely.

A robotic rover on Mars that uses reinforcement 
learning to navigate the planet's surface and explore 
geological features, optimizing its path for maximum 
exploration.



An (incomplete) Overview of Learning Tasks

12/9/2024© Lamarr Institute for Machine Learning and Artificial Intelligence 18

Generative Models

Models that learn to generate new data similar to the 
input data, such as images, text, or music.

Examples

A model that generates realistic images of people 
who don't exist, similar to the images found in GAN 
(Generative Adversarial Networks).

A Generative Adversarial Network (GAN) generating 
synthetic data of neutrino interactions in a detector, 
based on patterns in real event data, to simulate rare 
particle interactions that are hard to observe directly.



An (incomplete) Overview of Learning Tasks
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Clustering

A task where the model groups data points into 
clusters based on similarities, without any predefined 
labels.

Examples

A customer segmentation model that groups 
customers into clusters based on purchasing behavior 
(e.g., "high spenders," "frequent buyers," etc.).

A model that clusters galaxies into different groups 
based on their morphology (e.g., elliptical, spiral, 
irregular)
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Vision: AI-driven Gamma-ray Astronomy

Help us to improve our data analysis with AI. You‘re the experts!



Vision: AI-driven Gamma-ray Astronomy

Help us to improve our data analysis with AI. You‘re the experts!

MAKE IACTS INTELLIGENT, AGAIN!



▶ From Blazars to airshowers to the data





Airshowers Detection principle
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This is what we are looking for…
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Spectral energy distributions (SEDs)



This is what we are looking for…
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Periodicities? High-Energy Gamma-Ray Lightcurves

Moon Gaps

…But

Lightcurves



Bad Moon Rising?
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PMT SiPM

• No HV (~70V)

• PDE 

comparable to 

PMTs

• Robust



The Experiment
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30 Hexagon 
Mirrors

9,5 m2 Mirror Area

La Palma
~ 2200 m alt.

Hexagon 
Pixel

1440 SiPMs

4,5°

FOV

Camera

∅ 3,8 m 

∅ 53 cm



Analysis chain
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Analysis chain
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Analysis chain
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Analysis chain
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Analysis chain
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Extraction Cleaning Parametri-zation

Particle
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Unfolding
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Analysis chain
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Simulations
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We don’t have a testbeam so we need simulations to know the truth

CORSIKA Samples

CORSIKA
Schauer

Ceres

Teleskop &
Umgebung

(u.a. NSB)

Kamera
(SiPMs, 

Electronic,…)

MC Sim.



Uestions?
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Which Information did you 
gather?

Domain Expert:
Astrophysicist

AI Expert:
Computer Scientist

o Real-World use-case (Motivation)

o Performance metric for real-world task

o Downstream Task

o Performance metric for real-world task

o Data type: e.g. time series, images, tabular

o Learning Task

o Ground Truth / Labels



Assessment of the provided information
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Useful Overwhelming
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