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Problem Statement

- Online setting: Input data points arrive one by one
- Prediction using pretrained models (offline)
+ Problem: Model performance can degrade with time

- = Pool of pretrained models, of which we want to choose the best

Application scenario: Time Series Forecasting, but our frameworks are general



Region of Competence (RoC)

Framework for model competence

Each model in a pool remembers the
types of input it excelled at.

At inference time: RoC serves as indica-
tor for expected performance

Assumption:

Input close to RoC member
= High performance
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Concept drift

Real phenomenon in real applications

Adaption necessary to keep performance high

time sudden/abrupt incremental gradual reoccuring concepts outlier (not concept drift)

data mean

Figure 1: From [1]



TSMS [4]

Recently proposed methods utilize pools of Neural Networks

- Amal Saadallah, Matthias Jakobs, and Katharina Morik. “Explainable online
ensemble of deep neural network pruning for time series forecasting”. In:
Machine Learning 111.9 (2022)

- Amal Saadallah, Matthias Jakobs, and Katharina Morik. “Explainable Online Deep
Neural Network Selection Using Adaptive Saliency Maps for Time Series
Forecasting”. In: Machine Learning and Knowledge Discovery in Databases. Research Track.
Ed. by Nuria Oliver et al. Cham: Springer International Publishing, 2021, pp. 404—-420. ISBN:
978-3-030-86486-6

High performance

Low interpretability of base models



TSMS [4]

- Pool is made of tree-based models for improving interpretability
- Decision Trees, Random Forests, Gradient Boosting Trees

- Refinement of RoC members using Shapley values
+ Computation efficient for tree-based models



TSMS [4]

Framework from cooperative Game Theory to distribute contributions to an outcome
fairly unto the participants

Value function v, set of all players N

How much did player i € N contribute to value v(N)?

N|—1\ ~Lo(Sufi})—v(S
¢i(v) = ZSQN\{i} (l |L|9| ) %)\()



TSMS [4]

Shapley values are the only attribution method satisfying the following axioms:

1. Efficiency: Y,y ¢i(v) = v(N) — v(0)
2. Null player: v(SU{i}) =v(S) VS C N\ {i} = ¢:(v) =0
3. Symmetry: v(SU{i}) =v(SU{j}) VS C N\ {i,j} = ¢i(v) = ¢;(v)
4. Linearity: ¢;(v+w) = ¢;(v) + ¢;(w) Vi € N
+ Important for Random Forests



TSMS [4]

In Machine Learning, players are features and value functions are usually defined as

vg(z,8) = Exx[g(X | Xs = 75)]

for a given model prediction function g.

We want to explain the loss, changing v to

vg(2,,8) = Ex~x[(9(X | Xo = zs5) — )]



TSMS [4]

.0

Why was forecaster f; chosen?

—— Window to forecast
= Closest RoC
—— Furthest RoC

0.5

0.0

Why did forecaster f; predict its output?

Feature intervals
—— Window to forecast
—— Ground Truth

Forecasted value
Closest RoC
Forecasted value
Furthest RoC
Shapley values
for prediction



TSMS [4]

Visualization of RoC for model fi7
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AALF (under review)

+ Model pool restricted to two
models

- Deep Learning Ensemble (f.)
+ Linear Regression (f;)
+ Use f; whenever possible
+ Meta-learner decides based
on historic data
+ Hyperparameter p can be set
to allow for more predictive
performance or focus on more
interpretability

= Some predictions of f; have very high error, but most are good enough
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AALF (under review)
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